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Abstract

We propose an approach to optimally select corporate bond portfolios based on
bond-specific characteristics (maturity, credit rating, coupon, illiquidity, past perfor-
mance, and issue size) and macroeconomic conditions (recessions and macroeconomic
uncertainty measures). The approach relies on a parametric specification of the port-
folio weights and allows us to consider a large cross-section of corporate bonds. We
find that in periods of low macroeconomic uncertainty, the optimal corporate bond
portfolio is tilted toward bonds with longer maturity and higher credit rating (high
ex-ante default risk), relative to the benchmark. By contrast, in high macroeconomic
uncertainty regimes, the optimal strategy exhibits a flight-to-safety aspect and favors
short maturity and relatively low-credit-rating bonds. In all regimes, corporate bonds
with high coupons, high past performance, and small size of issuance lead to higher
certainty equivalent returns. Overall, we find that the characteristics used in the cor-
porate bond pricing literature to proxy for various sources of risk are also useful in
forming corporate bond portfolios. Conditioning on these characteristics and macroe-
conomic variables leads to a significant improvement in portfolio performance, with
the certainty equivalent increasing about 5% per annum after conservative transaction
costs. The gain in performance is evenly divided between high and low macroeconomic
uncertainty regimes and is not exclusively concentrated in high-yield bonds.
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1 Introduction

The value of US corporate debt outstanding has grown steadily from $460 billion in 1980 to

more than $8 trillion in 2015. From an investor’s perspective, corporate bonds now constitute

one of the largest asset classes, along with public equities and Treasuries.1 A large literature

studies corporate yield spreads and, specifically, to what extent their cross sectional and time

series variation can be explained by proxies for credit risk, illiquidity, preference for high-

coupon paying bonds (“reaching for yield”), momentum, downside risk, and fluctuations in

macroeconomic conditions.2 While we now have a better understanding of how to price

corporate debt, the complementary and equally important issue of how investors should

choose a portfolio of corporate bonds has received almost no attention.

In this paper, we ask whether bond-specific characteristics – such as maturity, credit

ratings, coupon rate, illiquidity measures, past performance, and size of issue – can be used

to select a portfolio of corporate bonds whose returns are, relative to a benchmark and after

transaction costs, of economic significance? If so, what is the tilt of the optimal corporate

bond portfolio, i.e. what characteristics are to be emphasized and in what direction? And

how do macroeconomic fluctuations impact the composition and performance of the optimal

allocation? These questions have received no attention in the empirical portfolio choice

literature which has focused, almost exclusively, on equities (Brandt (2010)). Addressing

them will further our understanding of how investors should optimally allocate resources in

the over-the-counter (OTC) corporate bonds market, which is fundamentally different from

the centralized stock market and is significantly under-studied. These questions are also of

practical relevance as actively-managed corporate bond funds have attracted large inflows

over the last several years. Failure to properly manage these portfolios might result not only

1The market value of the all publicly traded stocks in the U.S. (NYSE/AMEX/NASDAQ) was about $20 trillion at the end
of 2015. The value of outstanding Treasury debt at the end of 2015 was $12.8 trillion.

2The corporate bond pricing literature is voluminous and we cannot do it justice in a footnote. Important papers in that
literature include Elton et al. (2001), Longstaff, Mithal, and Neis (2005), and Huang and Huang (2012) (credit risk); Bao, Pan,
and Wang (2011), Lin, Wang, and Wu (2011), Schestag, Schuster, and Uhrig-Homburg (2016) (illiquidity); Becker and Ivashina
(2015) (reaching for yield), Jostova et al. (2013) (past performance); Bai, Bali, and Wen (2016)(downside risk); He and Xiong
(2012) (rollover and credit risk);Chen, Collin-Dufresne, and Goldstein (2009), Bhamra, Kuehn, and Strebulaev (2010), and
Chen (2010) (macroeconomic conditions and credit risk) and Chen et al. (2016) (liquidity and default risk over the business
cycle).
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in an inefficient allocation of resources, but also in sudden outflows, and increased odds of

instability in that industry (Feroli et al. (2014) and Goldstein, Jiang, and Ng (2016)).

The construction of an optimal corporate bonds portfolio presents interesting concep-

tual challenges. The traditional mean-variance framework of Markowitz (1952) is the usual

starting point for creating portfolios of stocks or broad asset classes (Campbell and Viceira

(2002)). With individual corporate bonds, however, this approach is hard to implement as

it involves estimating bond expected returns, and their variances and co-variances with a

short time-series, large cross-section, and an unbalanced dataset.3 Given the relatively short

historical data of corporate bond returns, it is clear that the mean-variance approach is

econometrically daunting, to say the least. Incorporating conditioning information–either

bond-specific characteristics or time-variation of macroeconomic conditions–adds another

layer of intractability. Finally, it is not clear that mean-variance is the right utility frame-

work, given that the distribution of corporate bond returns is non-normal.

We propose an approach for choosing a portfolio of corporate bonds based of bond-specific

characteristics and macroeconomic regimes. We use a modification of Brandt, Santa-Clara,

and Valkanov’s (2009) approach of directly parameterizing the portfolio weights of each as-

set as a function of its characteristics and macroeconomic variables. The main conceptual

advantage of this approach is to sidestep the ancillary, yet very challenging, step of modeling

the joint distribution of returns and characteristics and instead focus directly on the object

of interest: the portfolio weights. We use a novel functional form of the weights that ac-

commodates the extreme heterogeneity in corporate bond returns and characteristics. With

the initial specification as a starting point, we modify the weights to capture some of the

peculiarities of corporate bonds trading. Unlike equities, corporate bond trading occurs in

OTC markets, and involves high transaction costs (Edwards, Harris, and Piwowar (2007),

Dick-Nielsen, Feldhutter, and Lando (2012), Bessembinder et al. (2016)) and costly short

selling (Asquith et al. (2013)). Moreover, turnover in corporate bond portfolios is fairly large

3The maturity of corporate bonds rarely exceeds 15 years which implies that the well-known difficulties of estimating a large
number of the first two moments of returns and of ensuring the positive definiteness of the covariance matrix (e.g., Brandt
(2010)) are even more severe than in the case of stocks. Moreover, the cross section of bond returns is large, as many companies
have multiple bonds outstanding at a given time. In addition, the panel data of bond returns is severely unbalanced because
securities enter and exit the sample frequently as new bonds are issued or existing debt matures or is paid off.
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when compared to equities, even for passive benchmark portfolios.4 We therefore estimate

weight specifications that account for transaction costs, reduce the turnover, and penalize

short selling.

The parameters of the weights are estimated by maximizing the average utility a repre-

sentative investor would have obtained by implementing the policy over the historical sample

period. By framing the portfolio optimization as a statistical estimation problem with an ex-

pected utility objective function implies that the estimation of the weights takes into account

the relation between the bond-specific and macroeconomic characteristics and expected re-

turns, variances, covariances, and even higher-order moments of corporate bond returns, to

the extent that they affect the distribution of the optimized portfolios returns, and there-

fore the investors expected utility. In the empirical implementation, we assume a constant

relative risk aversion (CRRA) utility which is simple and yet implies that the investor cares

about all moments of the distribution of the corporate bond portfolio returns, not only means

and variances. This parametric approach is parsimonious in the number of parameters to

estimate, is simple to implement, and allows us to consider a large cross-section of bonds

(on average, we have 966 bonds in a given month) and several characteristics.

We estimate the portfolio weights using monthly individual bond returns from TRACE,

spanning the period January 2005 until September 2015. The bond characteristics that we

consider – time to maturity (TTM), credit rating (RAT), coupon yield (COUP), a measure

of illiquidity (ILLIQ), a measure of performance over the past six months (a.k.a. momentum,

MOM), and size of the issue (SIZE)– are either from MERGENT FISD or are computed from

the bond returns. We start off with a specification of the weights that is solely a function

of bond-specific characteristics. Transaction costs values are taken from the recent litera-

ture (Edwards, Harris, and Piwowar (2007), Dick-Nielsen, Feldhutter, and Lando (2012),

Bessembinder et al. (2016)). Moreover, we introduce a variation of the weights that allows

the investor to lower her transaction costs and turnover by trading only partially to the op-

4For instance, the average total (round-trip) turnover of PIMCO Total Return Fund (PTTAX), Schwab Total Bond Market
Fund (SWLBX), and Vanguard Intermediate-Term Bond Index (VBIIX) is 521%, 266%, and 127%, respectively, over the last
five years. The high turnover is partly mechanical, due to the fact that a sizeable fraction of bonds expire every periods and
the funds have to be re-invested.
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timal weights. This smoothed version of the trading strategy is motivated by recent work by

Garleanu and Pedersen (2013) who show that, in the presence of predictable components of

asset returns and transaction costs, the optimal investment strategy is a linear combination

of a hold portfolio and an actively traded portfolio.

Our results show that bond-specific characteristics are important in selecting corporate

bond portfolios. The optimal allocation places significantly more weight on bonds with

lower maturity, higher credit ratings, higher coupons, higher momentum, and lower size

of issuance. The sign of the characteristics is consistent with the interpretation that, on

average, the optimal portfolio is tilted toward variables that are often used to proxy for risk

premia in the corporate bonds market. For instance, the tilt toward higher credit-risk bonds

is in line with Longstaff, Mithal, and Neis (2005) who find a strong link between corporate

yield spreads and credit risk. A tilt toward high-coupon-paying bonds can be interpreted as

a “reaching for yield” behavior described in Becker and Ivashina (2015). The only exception

is maturity for which, as we see below, the tilt is heavily dependent on the state of the

macroeconomy. We find that smoothing the optimal trading strategy reduces significantly

the turnover of the optimal portfolio.

We measure the economic importance of the characteristics by comparing the certainty

equivalent return of the optimal portfolio to that of a value-weighted or equal weighted

benchmark. The smooth version of the weights yields certainty equivalent returns of 2.6%

per annum for the most conservative one-way transaction costs of 75 basis points (1.5%

round-trip) and a constant risk aversion coefficient γ of 7. For the more empirically defensible

values of 50 basis points transaction costs, the certainty equivalent is 5% per year. These

results are likely understating the overall potential gains from the parametric approach, as

they obtain purely in the cross section without factoring in macroeconomic fluctuations into

the portfolio decision.5

Next, we introduce macroeconomic regimes into the weight functions. Specifically, we

interact bond characteristics with the following index variables that capture the states of the

5While the characteristics are allowed to change across corporate bonds and over time, their impact on the weights is constant
in this specification.
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economy: NBER recessions, the macroeconomic uncertainty index of Jurado, Ludvigson,

and Ng (2015), and a downside measure of risk, based on the cross-sectional distribution

of corporate bond returns. We find that the optimal corporate bond weights depend sig-

nificantly on the state of the economy. In expansions and low macroeconomic uncertainty,

the optimal portfolio is tilted toward long maturity and high credit rating bonds. In these

periods, the optimal strategy is to invest in characteristics that proxy for various sources of

risk. During recessions and periods of high macroeconomic uncertainty, the coefficients on

maturity and credit rating are negative, implying that the optimal strategy is to invest is

low maturity and low credit risk bonds. This is essentially a flight-to-safety strategy. The

certainty equivalent return of the optimal portfolio is between 4.7% (macroeconomic uncer-

tainty) and 5.3% (NBER recessions) higher than the value-weighted benchmark. Overall,

we find that macroeconomic regimes play an sizeable role in the optimal allocation of cor-

porate debt. Our results complement recent work by Chen, Collin-Dufresne, and Goldstein

(2009), Bhamra, Kuehn, and Strebulaev (2010), Chen (2010), He and Xiong (2012), and

Chen et al. (2016) who argue that macroeconomic fluctuations have implications for the

pricing of corporate debt.

Various extensions of the portfolio weights confirm our main findings. For instance,

adding short selling costs lowers somewhat the coefficient estimates but does not drive away

the portfolio performance results. Moreover, the trading patterns that we document are

not exclusively concentrated in high-yield bonds. Finally, additional moment-based char-

acteristics of bond returns, such as bond-specific volatility and skewness, only magnify the

performance gains of the optimal portfolio but also lead to significant increase in turnover.

In contrast to the large literature on the pricing of corporate debt, there is very little

corresponding work on the portfolio choice of corporate bonds. The closest paper to ours

is Bai, Bali, and Wen (2016) who investigate the cross-sectional determinants of corporate

bond returns. They find that downside risk is an important predictor of future bond returns

and illustrate the economic significance of downside risk in a mean-Value-at-Risk portfolio

timing framework. Their approach is completely different from ours and so are the empirical
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results. However, much like us, they emphasize the significance of taking into account the

non-normality of corporate bond returns.

The remainder of the paper proceeds as follows. We describe the basic approach and its

various extensions in Section 2. The corporate bond data is described in Section 3. The

empirical results are presented in Section 4. We conclude in Section 5.

2 Methodology

Our starting point is the parametric portfolio framework of Brandt, Santa-Clara, and Valka-

nov (2009). We introduce a functional form of the weights that is suitable for corporate

bonds data and accommodates both bond-specific characteristics and macroeconomic con-

ditions. We pay particular attention to transaction costs, which are large in the corporate

bonds market, and consider several variations of the weights, one that reduces turnover

and is similar in spirit to recent work by Garleanu and Pedersen (2013), and another that

incorporates costly short-selling.

2.1 Parametric Corporate Bond Portfolios

At each date t, there is a large number, Nt, of corporate bonds in the investable universe.

Each bond i has a return ri,t+1 from date t to t+ 1 and an associated vector of bond-specific

characteristics xi,t that are observed by investors at time t. For example, the characteristics

can be the bond’s maturity (or duration), credit rating, coupon rate, and measures of illiq-

uidity. The characteristics can also include the past six-month return, past (or forecasted)

volatility and skewness, which investors estimate at time t. The portfolio return of corporate

bonds between t and t+ 1 is rp,t+1 =
∑Nt

i=1wi,tri,t+1 where wi,t are the portfolio weights. An

investor chooses the weights that maximize her conditional expected utility,

max
{wi,t}

Nt
i=1

Et (u (rp,t+1)) . (1)

The portfolio weights are parameterized to be a function of bonds characteristics:
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wi,t = w̄i,t + g(
1

Nt

θ′xi,t), (2)

where w̄i,t are the weights in a benchmark portfolio, such as a value-weighted or other index

portfolio. In the empirical section, we consider several benchmarks that are relevant for

corporate bond portfolios.

The function g( 1
Nt
θ′xi,t) captures deviations of the portfolio weights wi,t from the bench-

mark and is parameterized by a vector θ, to be estimated. Its functional form is dictated by

the application at hand. For instance, Brandt, Santa-Clara, and Valkanov (2009), Parroso

and Santa-Clara (2016), and Ghysels, Plazzi, and Valkanov (2016) use a linear specification

to form equity or currency portfolios.6 The linearity of g(·) is appealing from a tractability

standpoint and produces reasonable weights when the characteristics are relatively “smooth”

and do not exhibit significant variability over time (e.g. firm size). Corporate bonds char-

acteristics, however, are prone to large changes which in turn implies significant variation

in the weights and a high turnover. High turnover is undesirable particularly when trading

corporate bonds which have significantly larger transaction costs and lower liquidity than

stocks or currencies.

2.1.1 Logistic Parametric Portfolios

For bond portfolios, we specify the weights to be a logistic function of the characteristics:

wi,t = w̄i,t + (h(
1

Nt

θ′xi,t)− h̄t) (3)

h(
1

Nt

θ′xi,t) =
1

1 + e
− 1

Nt
θ′xi,t

, (4)

6Specifically, Brandt, Santa-Clara, and Valkanov (2009) use g (θ′xi,t) = θ′ (xi,t − x̄t) /Nt, where xi,t = x̃i,t/σx,t are char-

acteristics, standardized by their cross-sectional variances σx,t and demeaned by the cross-sectional average, x̄t = 1
Nt

ΣNt
i=1xi,t.

In that linear specification, it is clear that the deviations from the benchmark portfolio sum to zero, ΣNt
i=1g (xi,t|θ) = 0, and

therefore the portfolio weights some up to one, ΣNt
i=1wi,t = 1.
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where h̄t = (ΣNt
i=1h( 1

Nt
θ′xi,t))/Nt is the cross-sectional average of h( 1

Nt
θ′xi,t) at time t. The

logistic specification (4) effectively attenuates the impact of extreme fluctuations of xi,t on

the weights. We demean h( 1
Nt
θ′xi,t) by its cross-sectional average to insure that deviations

from the benchmark weights sum up to zero. The weights in (3-4) are a specific functional

form of expression (2), where g( 1
Nt
θ′xi,t) = (h( 1

Nt
θ′xi,t)− h̄t), so that ΣNt

i=1g( 1
Nt
θ′xi,t) = 0 and

ΣNt
i=1wi,t = 1.

There are alternative ways of specifying g(·) such that it is robust to extreme realiza-

tions of xi,t. For instance, one can truncate extreme values of xi,t. The advantage of the

logistic transformation is its smoothness and well-known properties. The characteristics are

standardized to have unit standard deviation by xi,t = x̃i,t/σx,t, where σx,t is the cross-

sectional variance of the raw characteristics x̃i,t. The standardization allows us to compare

the magnitudes of the coefficients θ across characteristics.

The term 1/Nt is a normalization that allows the portfolio weight function to be applied

to an arbitrary and time-varying number of bonds. Without this normalization, doubling the

number of bonds without otherwise changing the cross-sectional distribution of the charac-

teristics results in twice as aggressive allocations, even though the investment opportunities

are fundamentally unchanged.

The parametric approach effectively reduces the parameter space to a low-dimensional

vector θ. The coefficients in θ do not vary across assets or through time which implies that

bonds with similar characteristics will have similar portfolio weights, even if their sample

returns are different. In other words, the characteristics fully capture all aspects of the joint

distribution of bond returns that are relevant for forming optimal portfolios. This allows us

to reduce the parameter space but it also implies that misspecification of the variables in xi,t

will lead to misspecification in the portfolio weight. The choice of conditioning information

xi,t is important as it is in any estimation problem.
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2.1.2 Estimation

For a given functional form of the utility (e.g., CRRA or quadratic) and the weights in either

(3-4), we estimate the parameters θ by maximizing the sample analogue of expression (1)

with respect to these parameters

max
θ

1

T

T∑
t=1

(u(
Nt∑
i=1

wi,tri,t+1)). (5)

As bond returns are negatively skewed, in this paper we use a CRRA specification of the

utility. Thus, our framework captures the relation between the xi,t’s and the first, second, and

higher-order moments of returns, to the extent that the characteristics affect the distribution

of the optimized portfolio’s returns, and therefore the investor’s expected utility.

The estimation of θ is within the class of extremum estimators and its properties are

well-known (Amemiya (1985)). This approach is also used by Brandt, Santa-Clara, and

Valkanov (2009) and Ghysels, Plazzi, and Valkanov (2016). Given the presence of cross-

sectional dependence in the characteristics, we bootstrap the standard errors. Details of the

estimation and bootstrap are spelled out in Appendix B.

2.2 Transaction-Cost-Adjusted Returns

Investors in the corporate bonds market face significant transaction costs which might render

some highly volatile strategies unprofitable. The parametric nature of the portfolio policy

allows us to compute turnover and to optimize the after-transaction-cost returns. To do

that, we define the bond portfolio return, net of transaction costs, as

rp,t =
Nt∑
i=1

wi,tri,t+1 − cTt, (6)

where Tt =
∑Nt

i=1 |wi,t−wi,t−1| is the overall portfolio turnover between period t−1 and t and c

is the one-way trading cost, averaged across bonds and over time. As transaction costs penal-

ize proportionately large weight fluctuations, the characteristics in the policy function (3-4)
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will improve the portfolio performance only if they generate significant after-transaction-cost

returns. We use expression (6) as a starting point for incorporating transaction costs in the

optimal portfolio decision.

There is considerable evidence that transaction costs vary over time and across bonds

(Edwards, Harris, and Piwowar (2007), Dick-Nielsen, Feldhutter, and Lando (2012), Bessem-

binder et al. (2016)). We therefore allow transaction costs to vary in the cross-section and

over time, ci,t, and write the after-transaction-cost return as:

rp,t =
Nt∑
i=1

wi,tri,t+1 −
Nt∑
i=1

ci,t|wi,t − wi,t−1|. (7)

In the empirical implementation, in addition to the constant-transaction-costs specification

(6), we will use transaction costs that vary over time (ct) and also across bonds (ci,t).

A more involved question is whether, in the presence of transaction costs, it is optimal

to trade every period to the optimum allocation. A large literature studies optimal selection

with trading costs proportional to the bid-ask spread.7 In a recent paper, Garleanu and

Pedersen (2013) consider a case when trading costs are proportional to the amount of risk in

the economy and expected returns are predictable. For a mean-variance investor, they show

that the optimal trading strategy is a linear combination of last period’s “hold” portfolio and

the current optimal allocation. Importantly, their strategy involves constant trading toward,

but not all the way to the optimal portfolio. In the next section, we consider a parametric

version of Garleanu and Pedersen’s (2013) solution and investigate whether the economic

intuition of their model holds more generally.

2.3 Reducing the Turnover in Corporate Bond Portfolios

Specification (3-4) implies that investors trade every period all the way to the optimal al-

location. However, in the presence of trading costs and time variation in investment op-

portunities, such a strategy will be very costly, especially in the context of corporate bond

7Important papers in that literature include Magill and Constantinides (1976), Constantinides (1986), Amihud and Mendel-
son (1986), Taksar, Klass, and Assaf (1988), Davis and Norman (1990), Vayanos (1998), Vayanos and Vila (1999), Leland
(2000), Lo, Mamaysky, and Wang (2004), Liu (2004), Garleanu (2009), Acharya and Pedersen (2005).
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trading. An alternative strategy is to trade partially toward the optimum weights. A partial

adjustment has two important advantages. It keeps current transaction costs low, as we

are not trading all the way to the optimal weights. And future transaction costs will be

low as the partial adjustments will target the new weights, which are expected to change

predictably with the characteristics.

We modify the portfolio specification to accommodate partial adjustments. Each period,

we have a target portfolio which is specified as:

wti,t = w̄i,t + g(
1

Nt

θ′xi,t). (8)

This is the portfolio policy (3) of an investor who trades all the way to the optimum. However,

in the presence of transaction costs, investors can choose to re-balance only partially from

their previous portfolio allocation, if the increase in portfolio performance associated with

the new allocation is not sufficient to cover the transaction costs.

We define the optimal portfolio to be a weighted average of the target portfolio and a

“hold” portfolio:

wi,t = αwhi,t + (1− α)wti,t (9)

where 0 ≤ α < 1. The hold portfolio at time t is

whi,t = ηi,twi,t−1 (10)

and ηi,t =
1+ri,t
1+rp,t

. The hold portfolio at t is the same as the portfolio at t−1 with the weights

changed by the returns.

The parameter α captures the degree of smoothing on the target portfolio weights. As

α increases from zero to 1, more weight is placed on the hold portfolio and the turnover de-

creases accordingly. The combination of the hold and target portfolios effectively attenuates

the effect of the characteristics on the weights. This is easiest to see if ηi,t = 1, i.e. the

returns of asset i are equal to the portfolio return. In that case, whi,t = wi,t−1 and the optimal
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weights can be expressed as an exponentially decaying function of the signal in wti,t.
8 The

attenuation holds more generally, as long as |αηi,t| < 1.

There are a few ways to motivate the partial adjustment strategy (9). In the presence

of predictable components of asset returns and transaction costs, Garleanu and Pedersen

(2013) show formally that the the optimal investment strategy is a linear combination of a

hold portfolio and an actively traded portfolio. The intuition of their result is very much

along the lines of the discussing above: high transaction costs lead investors to trade only

partially toward the optimal solution and when they do trade, they do so anticipating that

the optimal allocation will change. Garleanu and Pedersen (2013) show that α is a function

of the investor’s risk aversion and transaction costs. While their solution obtains for a mean-

variance utility and a specific modeling of transaction costs, the gist of their idea ought to

hold more generally. We will map out the dependence between α, the risk aversion coefficient,

and transaction costs of a CRRA investor to see whether the our results are consistent with

the intuition in Garleanu and Pedersen (2013).

We can also view specification (9) as a parsimonious way to capture the dynamics of

the weights. If ηi,t = 1, we can express the weights as wi,t = αwi,t−1 + (1 − α)wti,t. In

this autoregressive structure, the restriction is that all weights have the same autoregressive

parameter. Finally, the partial adjustment specification can be thought of as a shrinkage of

the target weights toward the hold weights.

We could let α be time varying as in Brandt, Santa-Clara, and Valkanov (2009). In their

specification, αt is determined essentially by the volatility of the characteristics relative to

the magnitude of an exogenously specified no-trade region. Hence, in their approach αt is

calibrated (rather than estimated) for a given value of the no-trade region. We will estimate

α from the data without relying on calibrating assumptions about the size of the no-trade

region. We use the same approach outlined in Section 2.1.2 to estimate the smoothed version

of the weights.

8Specifically, wi,t = α
∑t−1

k=0 α
jwt

i,t−k + wi,0.
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2.4 Macroeconomic Fluctuations

While the bond-specific characteristics in expression (4) vary over time, their impact on

the optimal weights, θ, is constant. It is reasonable, however, to conjecture that changes

in the overall economy might lead to different optimal corporate bond allocations. Indeed,

evidence from the corporate bond pricing literature suggests that default and liquidity risk

have a larger effect on corporate bond yields during economic downturns (Edwards, Harris,

and Piwowar (2007), Bao, Pan, and Wang (2011), Dick-Nielsen, Feldhutter, and Lando

(2012), and Friewald, Jankowitsch, and Subrahmanyam (2012)). Chen et al. (2016) provide

a compelling model that captures the interaction of default and credit risk over the business

cycle.

We use the parametric approach to estimate the optimal allocation of corporate bonds

during macroeconomic regimes. Specifically, suppose that we are interested in whether the

optimal allocation is different during the recent financial crisis of 2007-2009 versus the non-

crisis period. Let Zt be a variable that captures the state of the economy, such that Zt equals

to 1 during the crisis period and zero, otherwise. Then, the interaction xi,t×Zt captures the

bond characteristics during the financial crisis. By including xi,t × Zt and xi,t × (1− Zt) in

expression (3), we have two sets of θ parameters, for the crisis and non-crisis periods. This

is the parametric portfolio analogue to running regressions with regime dummy variables.

We aim to answer the following three questions by interacting macroeconomic regimes

with the other characteristics. First, does the effect of the characteristics change with the

regimes? Second, would the performance of the portfolio improve once we account for the

changes in macroeconomic regimes? Finally, is the improvement in portfolio performance

clustered in any particular regime? We will see in the empirical section that our approach

provides clear answers to these questions.
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2.5 Costly Short-Selling

Positive and negative weights in expression (7) are treated symmetrically which implies that

shorting corporate bonds does not involve additional costs. However, there is a significant

literature on short sales and their impact on asset values.9 That literature has almost

exclusively focused on equities, with two exceptions: Nashikkar and Pedersen (2007) and

Asquith et al. (2013). Given that borrowing and shorting of bonds takes place in the OTC

market, whereas in the stock market borrowing is OTC and short-selling takes place on an

exchange, it is reasonable to conjecture that the costs of shorting bonds is larger than for

equities.

Asquith et al. (2013) provide a thorough description of how corporate bonds are borrowed

and shorted. Using a proprietary dataset, they estimate that the costs of shorting corporate

bonds is 10 to 20 basis points. However, as the source of their data is a major depository

institution, their estimates do not take into account additional search costs that corporate

bond investors might face (Duffie, Garleanu, and Pedersen (2005)). While search frictions

are hard to quantify, we take the Asquith et al. (2013) estimates as a lower bound of the

total borrowing costs faced by investors in that market.

We capture costly shorting of corporate bonds by modifying the portfolio return as

rp,t =
Nt∑
i=1

wi,tri,t+1 −
Nt∑
i=1

ci,t|wi,t − wi,t−1| −
Nt∑
i=1

di,t|wi,t|Iwi,t<0, (11)

where Iwi,t<0 is an index variable that equals to one if weight wi,t is negative and zero,

otherwise. The cost of shorting a bond during a period is di,t and the total cost of all short

positions is
∑Nt

i=1 di,t|wi,t|Iwi,t<0. Investors who have large costs of borrowing bonds (i.e. large

di,t) will effectively be facing a no-short sale constraint.10 By varying the magnitude of di,t,

we can map out the impact borrowing costs have on the optimal portfolio. For simplicity, we

will assume that di,t is either constant across bonds and time, d, or that the cost of borrowing

9Papers that document the borrowing and shorting costs in the equity market are D’Avolio (2002), Geczy, Musto, and Reed
(2002), Jones and Lamont (2002), Ofek, Richardson, and Whitelaw (2004), and Kolasinski, Reed, and Ringgenberg (2013).

10An alternative way of imposing a no-short sales constraint is to specify the optimal policy so that the weights are non-
negative, as in Brandt, Santa-Clara, and Valkanov (2009)).
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is higher during periods of high macroeconomic uncertainty.

2.6 Benchmark Portfolios

The benchmark portfolio, w̄i,t, should be chosen appropriately as the empirical and economic

gains of the optimal allocation are expressed as deviations from it. With equities, the bench-

mark portfolio is often the value-weighted or equal weighted portfolio which are transparent,

investable (feasible), and fairly passive in the sense that they involve little turnover.

With corporate bonds, we use the following two benchmarks. The first benchmark sets

the portfolio weights equal to the issuing amount of a bond relative to the issuing amount

of all bonds in the sample at that time. This portfolio is value-weighted in the sense that

the weights are proportional to the value of the bond’s issue size. Its weights change when

bonds exit the sample (maturity, default, etc.) or new issues enter the sample. It differs

from the value-weighted portfolio in the equity literature as monthly price fluctuations do

not result in portfolio changes and need for re-balancing. This portfolio captures the spirit

of a value-weighted index while keeping turnover low.

The second benchmark is equal weighted and assigns the same weight to all bonds.

Similarly to the value-weighted portfolio, its turnover is low as weights change only when

bonds exit or enter the sample. The equal weighted portfolio puts more weight, relative to

the value-weighted, on small issues. We show in the empirical section that the returns of

the value- and equal weighted portfolios are highly correlated with the returns of widely-

used bond indices, such as the Bloomberg-FINRA Corporate Bond Index, and are therefore

suitable benchmarks for our analysis.

Another commonly used benchmark in dynamic asset allocation is a “hold” strategy (i.e.,

keep the weights unchanged from period t − 1 to t) which involves no trading and incurs

no transaction costs. With corporate bonds, it is practically difficult to implement a true

hold strategy, because the universe of corporate bonds changes significantly from period to

period. On average, about 36% of bonds mature in any given year and drop out from our

sample. Therefore, the portfolio has to be re-balanced periodically and new investments

16



have to be made on a monthly basis for the funds to be fully invested in corporate bonds.

The weights of the value- and equal weighted portfolios that we consider change little and

are very close in spirit to a passive hold portfolio.

The turnover that is empirically observed in corporate bond mutual funds is sizeable,

partly due to the periodic re-balancing related to the maturity of the assets. As an exam-

ple, the Vanguard Intermediate-Term Bond Index fund, which aims deliberately to reduce

turnover and trading costs, reports an average annual turnover of 127% for the 2012-2015 pe-

riod. Funds that trade more actively have a much higher turnover. For instance, the average

annual turnover of PIMCO’s Total Return Fund, one of the most widely held bond funds,

is approximately 490% over the 2012-2015 period.11 Edwards, Harris, and Piwowar (2007)

note in their study of corporate bonds trading that “the most surprising statistic is that

of the high sample turnover”, which they report is 119% annually, during their 2003-2005

period.

3 Data

3.1 Sample Construction

We use two main sources of data for our analysis. From MERGENT FISD, we obtain infor-

mation on bond characteristics, and TRACE is the source of US corporate bonds transaction

prices that we use to compute returns. Our sample spans January 2005 until September 2015,

covering roughly 10 years of data.12 In TRACE, we follow standard data cleansing proce-

dures described by Dick-Nielsen (2009).13 Furthermore, we implement the price filters used

in Edwards, Harris, and Piwowar (2007) and Friewald, Jankowitsch, and Subrahmanyam

(2012).14 We consider only straight (simple callable and puttable) bonds, thus excluding

11The turnover data for the Vanguard Intermediate-Term Bond Index fund (VBIIX) and Pimco’s Total Return Fund (PTTAX)
are from Morningstar: http://www.morningstar.com/.

12TRACE collects disseminated data since September 2002, but almost full coverage of the market starts in October 2004.
13We delete duplicates, trade corrections, and trade cancelations on the same day. Moreover, we delete reversals, which are

errors detected not on the same day they occurred.
14We adopt a median and a reversal filter. The median filter eliminates any transaction where the price deviates by more

than 10% from the daily median or from a nine-trading-day median, which is centered at the trading day. The reversal filter
eliminates any transaction with an absolute price change that deviates at the same time by at least 10% from the price of the
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bonds with complex structures.

We compute the return of bond i in month t as:

Ri,t =
(Pi,t + AIi,t + Ci,t)− (Pi,t−1 + AIi,t−1)

(Pi,t−1 + AIi,t−1)
(12)

where Pi,t is the volume-weighted average price of bond i on the last trading day of month

t on which at least one trade occurs, Pt−1 is the same price estimate in the previous month

and AIi,t is the accrued interest of the bond. Ci,t is the coupon paid between month-ends

t − 1 and t.15 This is a standard definition of corporate bond returns (see e.g. Lin, Wang,

and Wu (2011)).

We re-balance the portfolio on the last trading day of each month. To prevent stale

prices from entering the returns calculation, we consider only bonds that trade at least once

in the last 5 working days of the month and take the last daily volume-weighted average

price available.16 Bonds are included in the sample one month after issuance and excluded

two months before maturity to guarantee tradeable prices.

3.2 Bond Characteristics

The bond-specific characteristics we use as conditioning variables in our portfolio optimiza-

tion are time to maturity (TTM), credit rating (RAT), coupon (COUP), illiquidity (ILLIQ),

momentum (MOM), and the size of the bond offering (SIZE). TTM, RAT, COUP, and SIZE

are directly available from MERGENT, while the remaining characteristics are estimated

with transaction data from TRACE.

TTM is the difference in years between the maturity date of the bond and the day on

which the monthly return is calculated.17 RAT is the mean of credit ratings from Moody’s,

Standard and Poor’s, and Fitch. We assign integer values to the different rating grades, with

transaction before, the transaction after and the average between the two.
15The accrued interest is calculated according to Morningstar (2013).
16This measure is based on Bessembinder et al. (2009) and allows to have a better estimate of the price, given that it takes

into account the transaction volume. Moreover, it guarantees more powerful statistical tests on bond returns.
17We prefer TTM over bond duration (DUR) since calculating the latter requires the bond yield, which is not always available

in TRACE and, when present, is not always precise. Our results hold if we use DUR instead of TTM.
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1 being the highest and 21 the lowest credit score. Hence, bonds with high RAT score have

a high ex-ante probability of default. Bonds not rated by at least one of the agencies are

dropped from the sample. COUP is expressed as annualized percentage of face value. We

compute ILLIQ using the illiquidity measure of Bao, Pan, and Wang (2011). On trading

day d, the measure is given by the auto-covariance γd = −Cov(∆pt+1,∆pt), where ∆pt+1 is

the log transaction price of the bond. We implement the measure by taking into account

the covariance of trades during the previous 20 working days, which translates into a rolling

window of approximately one month.18 The momentum variable MOM is computed as the

monthly compounded return between months t−7 and t−1, following Jostova et al. (2013).

SIZE is the dollar value of the offering amount of the respective bond issue.

To analyze the impact of the second and third moment of bond returns on optimal

portfolio weights, we compute the volatility (VOL) and skewness (SKEW) of corporate

bond returns. These additional bond-specific characteristics are estimated with the whole

return history of a specific bond, i.e. from the time the bond enters our sample until t− 1.

The expanding window procedure allows us to include as much information as possible when

computing these characteristics.

We leave a one-month lag between bond-specific characteristics and monthly returns to

ensure that the information would have been available to the investor at the time of the

investment decision. An observation is dropped from the sample when information about at

least one characteristic is missing.19 We consider the logarithm of TTM, ILLIQ, and SIZE

to normalize the cross-sectional distributions of those characteristics.

18The choice of the rolling window size is largely arbitrary. Our choice is similar to Dick-Nielsen, Feldhutter, and Lando
(2012), and driven by the fact that we rebalance our portfolio every month. Results are similar by using a rolling window of
one week. In order to avoid extreme outliers, we winsorize the illiquidity measure at the 0.5% level. As an alternative, we
analyze the price dispersion measure based on Jankowitsch, Nashikkar, and Subrahmanyam (2011). The results are similar and
available upon request.

19Given our definition of MOM, this implies that we drop observations without a full 6 month lagged return history. This as
well ensures that the characteristics VOL and SKEW are not based on old information.
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3.3 Macroeconomic Conditions

To investigate whether different macroeconomic conditions affect the optimal allocation of

bonds, we use three variables to proxy for the state of the economy. The first variable is based

on NBER’s official dates of recessions and expansions (National Bureau of Economic Research

(2010)). We define a dummy variable, CRISIS, that equals to one during a recession, and

zero otherwise. In our sample, the recession period coincides with the financial crisis between

December 2007 and June 2009. The second variable is based on Jurado, Ludvigson, and Ng’s

(2015) comprehensive index of macroeconomic uncertainty. We create a dummy variable,

MU, which equals one when the index D12 is more than one standard deviation above

its mean and zero otherwise.20 The third variable, DOWN, captures the downside risk in

the corporate bond market during our sample period. We first create a monthly proxy for

downside risk by taking the lowest 10% quantile of corporate bond returns in each month.

Second, we sort the monthly downside risk measure and consider the lowest 25% as distress

months. DOWN is equal to one in month t if at least 3 out of the previous 5 months were

distress months.21

The three macroeconomic variables – CRISIS, MU, and DOWN – capture significant

changes, or regime shifts, in the economy. The CRISIS variable is constructed ex-post, after

the NBER publishes official start and end dates of U.S. recessions. MU and DOWN however

are forecasts of future economic uncertainty and are available to the investor at time t − 1

to build a trading strategy.

3.4 Summary Statistics

Table 1 reports basic summary statistics of our bond sample, of selected benchmark indices,

and of the bond characteristics. Panel A focuses on the composition of the sample used in

the estimation which, by construction, includes only the most tradeable part of the TRACE

universe. Our sample consists of 966 bonds per month on average, with a minimum of 667

20This period of extreme macroeconomic uncertainty fully overlaps with the NBER recession period and includes additional
non-recession months.

21Note that our measure is robust to alternative definition of downside risk quantiles (e.g. 2%, 5%, or 15%).
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bonds during the crisis period (March and April 2009) and a maximum of 1206 in March

2006. In total, 4,491 bonds appear at least once in our sample, amounting to approximately

$2 trillion of outstanding debt. These numbers are similar to studies that use a comparable

sample of traded bonds, such as Bao, Pan, and Wang (2011) and Israel, Palhares, and

Richardson (2016).22

As bonds mature and new bonds are issued, our sample changes monthly. We therefore

report statistics on the number and outstanding value of bonds coming in and dropping

out of the sample each month, mainly because of new issuances or maturity. On average,

about 6% ((28 + 29)/966) of the bonds enter or exit the sample every month, resulting in

an annualized (equal weighted) turnover of 72%. In value terms, this “automatic” turnover

is 3.7% ((13 + 9)/597) of the debt outstanding in our sample, or about 13.3% annualized.

The changing composition of the sample implies that even a passive corporate bond portfolio

involves a significant amount of re-balancing.

Panel B reports correlations and summary statistics of the equal and value-weighted (EW

and VW) portfolios in our sample of bonds. We will use these portfolios as benchmarks in

the assessment of our optimal trading strategy. In addition, we report summary statistics for

other widely used corporate bond indices, which are the one-month secondary market T-bill

(TBill) and the FINRA-Bloomberg Investment-Grade (CorpIG) and High-Yield (CorpHY)

total return corporate bond indices.23 We also consider a weighted average of the two indices

(CorpMix), based on the relative amount of investment and speculative grade bonds in our

sample each month. Finally, as a reference, we include the S&P 500 total return index.

The correlation of the EW and VW portfolio returns is 97.5%. The EW and VW returns

are also very highly correlated with the FINRA-Bloomberg index returns, which are com-

monly used in the industry as benchmarks. The correlations range from 78% for the CorpHY

index to 95% for our CorpMix index, the latter of which better reflects the composition of

22In comparable years of the respective samples, Bao, Pan, and Wang (2011) (Israel, Palhares, and Richardson (2016)) have
on average 698 bonds (1297 bonds), and $ 715 billion ($ 647 billion) outstanding debt per year, which compares to our 1458
bonds (1457 bonds) $ 548 billion ($ 718 billion) of outstanding amount. The sample periods that we use for this comparison
are 2005-2008 for Bao, Pan, and Wang (2011) and 2005-2015 for Israel, Palhares, and Richardson (2016).

23We choose the FINRA-Bloomberg corporate bond indices because they are based on the most frequently traded part of
TRACE, similar to our bond sample. Moreover, they are among the most widely used indices when it comes to US corporate
bonds. See https://www.finra.org/sites/default/files/AppSupportDoc/p015158.pdf for further details.

21

https://www.finra.org/sites/default/files/AppSupportDoc/p015158.pdf


our sample. The Sharpe ratio (SR) of the VW (EW) index is 0.603 (0.595) and lies be-

tween that of the CorpHY and CorpIG indices, which have Sharpe ratios of 0.394 and 0.716,

respectively, and is similar to the SR of the CorpMix index, at 0.675. These summary statis-

tics suggest that the VW and EW portfolios are very comparable to the FINRA-Bloomberg

benchmarks and are suitable for evaluating active corporate bond strategies.

In Panel C, we present summary statistics of bond-specific characteristics without trans-

formations in order to preserve economic magnitudes. The median bond in our sample has

a time to maturity of 5.384 years, a modified duration of 4.5, a rating score of 6.333 (which

corresponds to an A rating), a coupon of 5.750% of face value, and an issuing amount of

about USD$400 million. The median illiquidity measure is 0.328 and the median momentum

is 2.6%. As expected, the correlation between TTM and DUR is high, while the other vari-

ables have comparably lower correlations. The variable that exhibits the most correlation

with the other characteristics is COUP, but it is never above 0.4. In our sample, bonds with

high coupons tend to be of longer maturity and higher credit rating (i.e higher ex ante default

risk). MOM is positively correlated with RAT, consistently with the findings of Avramov

et al. (2007): momentum is stronger among low-rated assets. SIZE is slightly negatively

correlated with all other variables, RAT in particular.

4 Results

We present results for several parameterizations of the optimal portfolio weights of a CRRA

investor with risk aversion γ = 7, unless stated otherwise. In all cases, the benchmark is

either the value- or equal weighted portfolio. We begin with cases in which the investor

takes into account only bond-specific characteristics and faces transaction costs. Second, we

introduce a smoothing of optimal weights as a way of reducing the portfolio turnover. Third,

we test the sensitivity of our analysis to different benchmarks and combinations of charac-

teristics. Fourth, we estimate optimal portfolios that explicitly account for macroeconomic

regimes. Fifth, we examine how the optimal portfolio allocations change in the presence of

22



costly short-selling. Finally, we present important extensions such as dividing the sample

into investment grade and high-yield bonds as well as introducing volatility and skewness as

additional characteristics (Bai, Bali, and Wen (2016)).

4.1 Optimal Corporate Bond Parametric Portfolios

In Table 2, we display results for the case in which the portfolio weights are a function of

the following characteristics: TTM, RAT, COUP, ILLIQ, MOM, and SIZE. The parameters

of the optimal weights are estimated for a grid of one-way fixed transaction costs (10bp,

25bp, 50bp, and 75bp), for time-varying transaction costs (TS), as well as cross-sectional

and time-varying (CS-TS) transaction costs. One-way transaction cost estimates in the

literature range from 25bp to 50bp. We include 75bp as conservative trading costs (Edwards,

Harris, and Piwowar (2007)).24 The table is divided in three sets of rows, describing (1) the

impact of individual characteristics on the optimal weights and their standard errors, (2)

average portfolio weight statistics, and (3) annualized performance measures of the optimal

portfolios, respectively.

The first set of rows displays the marginal impact of the characteristics on the optimal

portfolio weights, in basis points, and the p-values of estimated θs in parentheses, based

on bootstrapped standard errors.25 For all transaction costs specifications, the investor

optimally tilts towards bonds with a shorter time to maturity, higher credit rating (higher

ex ante default risk), higher coupon, higher illiquidity, stronger momentum, and smaller

issue size. As expected, higher transaction costs penalize active trading and hence reduce

the overall impact of the characteristics. In most of the discussion below, we focus on the

results with the one-way 75bp transaction cost as it is the most conservative.

To understand the economic magnitude in Table 2, it is useful to discuss the results

24One-way transaction costs of 75bp are, strictly speaking, applicable for very small bond issues at the beginning of our
sample. For details on the choice of the level of transaction costs see Appendix A.

25The non-linearity of g(·) implies that the parameters θ cannot be interpreted as the marginal impact of changes in xi,t on
the optimal weights. The θs capture the marginal impact only if g(·) is linear in the characteristics, as in Brandt, Santa-Clara,
and Valkanov (2009). Hence, we evaluate marginal impact by computing changes in wi,t that result for a one-standard-deviation
change in each conditioning variable in xi,t, evaluated at the average value of the other characteristics and at the estimated θ.
This is the standard approach used to measure economic impact in non-linear models. Appendix C contains the exact steps of
the computation.
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in more details. The marginal impact of RAT, for instance, is about 3bp, for the 75bp

transaction costs case. The average bond in our sample has an average rating of about 7.3

(A- rating) and a standard deviation of 3.7 (Table 1). Take two bonds, one with a RAT

one standard deviation above the mean (11 or BB+) and another with a RAT one standard

deviation below the mean (3.6 or AA). Everything else equal, the weight on the first bond

will be 3bp higher than the average, whereas the weight on second bond will be lower by the

same amount. Similarly, if we consider COUP and its impact of 10.988bp, a one-standard

deviation increase (decrease) of the coupon rate of an average bond from about 5.5% to 7.2%

(3.8%) implies that the weight will increase (decrease) by about 11bp. As these are numbers

for individual bonds, they seem reasonable. If we aggregate over the entire cross-section

of about 988 bonds per month (Table 1), or even a fraction thereof, we observe that the

overall impact of the characteristics on the weight is extremely economically significant. The

underlying coefficients θ are estimated quite precisely, given the large cross-section of bonds.

The second set of rows summarizes the distribution of the optimal portfolio weights. The

VW and EW benchmarks in the first two columns account for fixed transaction costs of 75bp,

which is also the focus of the discussion below. The average weight in a single bond is 0.166%

which is close to the one of the benchmarks (0.11%). The average maximum and minimum

weights of the optimal portfolios are reasonable, −0.586% and 1.261%, respectively, and are

not extreme even for low transaction costs. They are in line with the min and max values

of the VW benchmark: 0.002% and 1.090%, respectively. Our optimal portfolio has an

overall short position of 29.1%, which not not extreme, but increases significantly with lower

transaction costs. The yearly portfolio turnover of 535%, which is significantly higher than

that of the benchmark, is in line with turnover levels of widely held corporate bond mutual

funds, as discussed in Section 2.6. The turnover also increases significantly when we lower

transaction costs. The results for the time-varying and cross-sectional transaction costs, in

the last two columns, are comparable to our reference specification. Overall, these results

show that, for reasonable transaction costs, the optimal portfolios do not rely on extreme

bets to achieve the performance levels that we turn to next.
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The last set of rows in Table 2 report annualized performance measures of the optimal

portfolios. The benchmark portfolios have a certainty equivalent (CE) return of about 3%.

The optimal portfolio delivers a CE return of between 4.4% to 13.6%, depending on trans-

action costs. As expected, there is a monotonic negative relation between CE returns and

transaction costs. Even for the conservative 75bp transaction cost case, we observe more

than 40% increase in the CE return per annum.26 For more realistic transaction costs, such

as 50bp, the CE return is 6.4%, an increase of more than 100% per year. These numbers are

highly statistically and economically significant. The reference optimal portfolio exhibits a

higher return than the benchmarks but a similar volatility, which translates into a Sharpe

ratio of 0.64 compared to 0.55 for the benchmark. Interestingly, the optimal portfolio has

higher skewness, which validates our earlier claim that taking into account higher moments

of corporate bond returns might be beneficial. The performance of the TS and CS-TS port-

folios are, once again, comparable to the performance of the 75bp reference specification. The

portfolio performance improves with decreasing transaction costs, yielding Sharpe ratios of

up to 1.325 that are mostly driven by a significant increase in average returns.

An interesting parallel emerge between our results and findings in the corporate bond

pricing literature. Namely, the optimal portfolios in Table 2 are tilted toward characteristics

that proxy for various sources of risk. For instance, bonds with higher default risk (high

RAT) have higher weights. Longstaff, Mithal, and Neis (2005) find a strong link between

default risk and corporate yield spreads. Similarly, bonds with high coupons have higher

weights. This finding can be reconciled with the ”reaching for yield” behavior described

in Becker and Ivashina (2015). For moderate transaction costs, we find that illiquid bonds

(high ILLIQ) have higher weights. Lin, Wang, and Wu (2011) use the same measure and

find that illiquid corporate bonds have higher average returns than liquid ones. Bonds

with high past return performance (high MOM) have higher weights. Jostova et al. (2013)

document momentum mostly in non-investment-grade corporate bond returns. From that

perspective, the only characteristic with an unexpected sign is TTM. We will see in Section

26Note that ∆CE in Table 2 is calculated on the basis of a benchmark with the same level of transaction costs of the respective
optimal portfolio.
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4.4 that the sign on TTM is entirely driven by the recent financial crisis. Specifically, the

coefficient of TTM is different across macroeconomic regimes. All characteristics turn out

to be statistically significant, except for illiquidity for high transaction costs. This result

is easy to understand as high transaction costs penalize illiquid bonds particularly severely

and make them less desirable from the investor’s perspective.

We also tried zero transaction costs and low-transaction costs specifications. The coeffi-

cients that we obtain are extremely large, and so is the CE return. For the no-transaction

cost case, we obtain a CE return of 25% per year and a turnover of about 7, 000% per year.

In the absence of transaction costs penalty and given the heterogeneity in characteristics,

the optimizer is essentially looking for extreme portfolio weights. The max and min portfolio

weights are also extreme and so is the short position of this portfolio. These results confirm

our prior that transaction costs have to be taken into account in a corporate bond portfolio

allocation.

4.2 Reducing the Turnover by Smoothing the Weight Adjust-

ments

Table 3 displays estimates of the smoothing parameter α for different levels of transaction

costs and risk aversion. We present results for fixed transaction costs of 50bp and 75bp and

a risk aversion coefficient of γ = 5 and 7.27 The smoothing parameter is estimated following

a two-step procedure. First, we estimate the optimal coefficients θ of the bond-specific

characteristics and, second, we optimize α given the estimated values of θ from the first

step. The table contains the optimal α along with the characteristics’ marginal impact and

their bootstrapped p-values in the first set of rows. The second and third set of rows show

average weight statistics and annualized performance measures, respectively.

The estimated α is always significant and lies between 0.5 and 0.56 in all portfolio spec-

ifications. This means that the investor optimally trades half-way from the previous (hold)

position toward the target. Consistent with the theoretical results of Garleanu and Pedersen

27Results for a larger grid of cs and γs are available upon request.
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(2013), the trading rate increases (and therefore α decreases) when transaction costs are low

and risk aversion is high. The intuition is as follows. When transaction costs are high, the

investor trades less aggressively. If risk aversion is high, the utility cost of deviating from

the optimal trade portfolio is larger and, therefore, the investor trades more closely towards

the target.

We now focus on the γ = 7 results which are exactly comparable to those in Table 2.

Allowing the investor to smooth his trading yields significant benefits in terms of portfolio

turnover and performance. The average annualized turnover drops approximately by half

for transaction cost levels of 50bp (569% vs. 1082%) as well as 75bp (264% vs. 531%).

At the same time, the percentage gains in CE return are considerable with respect to the

parametric portfolios without smoothing: 151.5% vs. 93.9% for transaction costs of 50bp

and 83.9% vs. 41.9% for transaction costs of 75bp. Overall, allowing the investor to trade

only partially toward the target portfolio leads to a significant improvement of the optimal

portfolio allocation as it reduces turnover significantly.

4.3 Variable Selection

Once we have established that the set of characteristics TTM, RAT, COUP, ILLIQ, MOM,

and SIZE significantly improve the portfolio performance, in Table 4 we investigate the

sensitivity of our approach to various combinations of these characteristics. We present

both a value-weighted (VW) benchmark, together with the optimal portfolios for different

combinations of the characteristics. For each combination, we display portfolios with and

without smoothing.

There is a clear difference among optimal portfolios that rely on TTM, RAT, and COUP

with respect to those that include all characteristics. While TTM, RAT, and COUP do

not seem to significantly improve the performance with respect to the passive benchmarks,

the inclusion of ILLIQ, MOM, and SIZE leads to a sizable increase of the performance.

Consistently, turnover increases when including these three bond-characteristics. In line with

these results, the smoothing plays a role only once ILLIQ, MOM and TTM are included,
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leading to an higher CE return and to a turnover which is almost half (263% vs 540%) of

that in the portfolio without α. Interestingly, the sign of RAT changes when not taking

into account ILLIQ, MOM, and SIZE. These findings are surprising and are worth further

investigation. We will see that once we condition on macroeconomic regimes, the parameter

on RAT changes with the regime.

4.4 Macroeconomic Conditions

In tables 5 and 6, we introduce variables proxying for macroeconomic conditions. Each

bond-specific characteristics is interacted with a dummy that equals one in economic down-

turns and zero otherwise. The estimations in these tables take into account transaction costs

of 75bp. We offer three alternative definitions of economic regimes. In table 5, we use the

National Bureau of Economic Research (2010) timing of recessions and expansions, while ta-

ble 6 presents results based on the macroeconomic uncertainty measured by the H12 index of

Jurado, Ludvigson, and Ng (2015) and a downside risk measure based on the cross-sectional

distribution of corporate bond returns.28 We interact the bond-specific characteristics with

these macro variables and present results both with an without smoothing. Additionally,

in table 5, we include different variable combinations along the lines of table 4. The tables

are divided in five sets of rows, displaying the marginal impact and p-values of bond-specific

characteristics during the non-crisis period, marginal impact and p-values during economic

downturns or macroeconomic uncertainty, optimal α when applicable, average weight statis-

tics, and annualized performance measures. We first discuss the results in table 5 for the

NBER recession/expansion periods. We then briefly compare our findings with the two

alternative macroeconomic measures in table 6, which contains very similar results.

When we condition our portfolio on the NBER dummies, the results are striking: the

coefficients on the bond characteristics during expansions are very different from those dur-

ing recessions. In expansions, the optimal portfolio tilts towards bonds with longer time to

maturity, worse rating, higher coupon, higher past momentum and smaller issue size. These

28For exact definitions of the three measures, see Section 3.3.
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are all characteristics used to proxy for various sources of risk in corporate bonds. In re-

cessions, the optimal portfolios favors safer bonds, those with shorter time to maturity and

better credit rating. The marginal impact on COUP and MOM, while of similar sign in both

regimes, is much larger during crises periods. The only characteristic that does not exhibit

significant changes across macroeconomic regimes is the size of the issue (SIZE). Moreover,

the difference in regimes is observed in all columns of the table. The signs of the character-

istics do not change across the different specifications and variations in marginal impact are

relatively small. Interestingly, the magnitude of the marginal impact coefficients is in general

higher for the recession period, reflecting the higher volatility in the returns observed in the

last financial crisis. In line with the results presented in table 2, all coefficients are statically

significant except for illiquidity. The portfolio strategy that emerges from table 5 is that, in

expansion, it is optimal to tilt generally toward riskier bonds while, in crisis situations, it is

optimal to adopt a flight-to-safety strategy and to favor bonds with shorter time to maturity,

lower default risk, high coupons, and higher momentum.

The average sum of negative weights (short position of the portfolio), which ranges from

28% to 41.7%, is close to that observed in Table 2 for the specification with transaction costs

of 75bp. The turnover however is significantly lower than in Table 2, where the annualized

turnover is 535%. Conditioning on the state of the economy leads to a significant reduction

in annualized turnover that drops to 416% in the full model and to 269% when excluding

MOM.29

The third set of rows contains the portfolio performance statistics. Conditioning on

NBER dummies leads to significant improvement in performance, relative to the specification

in Table 2. The percentage gain in CE return is 170% (vs. 41%), the average annualized

return is 13.5% (vs. 6.8%), and the Sharpe ratio is 1.06 (vs. 0.64). Interestingly, once we only

include TTM, RAT, and COUP, the CE return percentage gain also improves significantly

compared to the standard specification in Table 4 (148% vs. 9.7%). This is due to the

fact that TTM and RAT have very different coefficients in the two regimes. If we consider

29Momentum is typically a short-term factor and intuitively should lead to less trading once it is not taken into account.
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the full period alone, we are averaging over this time variation, which leads to the weaker

performance. Interestingly, once we account for macroeconomic conditions, the effect of

smoothing through α becomes marginal: the CE return increases from 8.4% to 8.5% and

turnover decreases slightly from 416% to 372.6%.

In Table 6, the results using alternative macroeconomic proxies are qualitatively similar.

The optimal portfolio based on the economic uncertainty index of Jurado, Ludvigson, and

Ng (2015) is closest to the one with NBER dummies. The portfolio based on downside risk in

the corporate bond market has slightly lower CE return and Sharpe ratio, which is perhaps

due to the fact that this measure is noisier and takes into account only the uncertainty

present in the corporate bond market instead of the whole economy. Smoothing through α

seems to have a stronger impact when using downside risk, while it leads only to marginal

improvements when adopting the economic uncertainty index.

Overall, our results show that macroeconomic variables have an important role in explain-

ing corporate bond returns. Taking them into account when choosing an optimal portfolio

significantly improves the risk-adjusted performance. To the best of our knowledge, we are

the first to explicitly condition on macroeconomic regimes when forming corporate bond

portfolios. While our approach simply distinguishes between economic up- and downturns,

the results are extremely encouraging and can be seen as a useful starting point for future

research in this direction.

4.5 Costly Short Selling

Table 7 shows optimal portfolios with different levels of short selling penalization, which

is defined separately for economic up- and downturns. All portfolios are based on a fixed

transaction cost of 75bp and take into consideration the NBER recession period from Decem-

ber 2007 till June 2009. The column names indicate the level of short selling penalization

in basis points that is applied to the non-crisis and crisis period, respectively. We display

in four separate sets of rows: (1)-(2) the marginal impact and p-values for both economic

regimes, (3) average weight statistics, and (4) annualized performance measures.
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We find that a stronger penalization of short selling leads to lower coefficients and slightly

lower significance for some of the bond-specific characteristics, as it is the case for higher levels

of transaction costs. However, except for coupon that gets close to zero, all characteristics

keep the original sign, and their economic interpretation is identical to that discussed in

Section 4.4 before. When looking at average weight statistics, introducing costly short

selling significantly impacts the short positions of the optimal portfolios, as expected. While

about 63% of the portfolio is invested in short positions when no penalization is applied,

this amount decreases to less than one fourth (13.5%) when using conservative short selling

costs of 40bp (non-crisis) and 80bp (crisis), respectively. Additionally, higher costs lead to

optimal portfolios with less extreme weights overall.

The effectiveness of the short selling penalization is strongly supported by the perfor-

mance measures. Even under the most conservative short selling costs (40bp / 80bp), the

gain in CE return of 106.5% with respect to the value-weighted benchmark is still remarkable.

The short selling penalization demonstrates to be a parsimonious, yet effective way to de-

crease the short positions in an optimal parametric portfolio, without excessively decreasing

the performance.

4.6 Investment Grade and High-Yield Bonds

In this section, we present optimal portfolios exclusively based on either investment grade

(IG) or high-yield bonds (HY). The overall sample of 116,932 bond-month observations

(4,491 single bonds) is divided in a subsample of 93,659 bond-month observations (3,994

single bonds) for IG and 23,273 bond-month observations (1,049 single bonds) for HY. This

division is especially interesting as many mutual bond funds only invest in one of the two

rating categories.

We estimate optimal bond portfolios for a wide range of transaction costs, assuming them

to be lower (higher) for IG (HY) bonds than in our 75bp reference case.30. Table 8 reports in

four separate sets of rows: marginal impact and p-values for both economic regimes, average

30For details on the choice of transaction cost levels, see Appendix A
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weight statistics and annualized performance measures. The results are presented in Table 8.

The marginal impact of bond-specific characteristics for portfolios based on the IG sub-

sample is similar to the one for the full cross-section of corporate bonds (Table 5). The

investor tilts towards safer assets in economic downturns and chases after risk premia in

normal periods. However, there are few differences from the full sample. The characteristic

SIZE flips the sign during the crisis period, i.e. the optimal portfolios are tilted towards big-

ger (and potentially safer) bond issues. This is consistent with the fact that investors tend

to invest into safer assets during economic downturns. Second, RAT is positive in general

and changes sign when decreasing transaction costs in the non-crisis period. This suggests

that the strong cut-off in the pricing of default risk is given by the investment-speculative

grade threshold, and that once a bond is IG, the rating factor has less importance.31 Third,

MOM seems to have a minor impact compared to the full sample, being insignificant during

downturns and of lower magnitude outside of the crisis. This is consistent with Avramov

et al. (2007) and Jostova et al. (2013), who find momentum to be particularly strong for

firms with high credit risk: a group that is missing in a sample composed of IG bonds.

As before, the turnover drops significantly with increasing transaction costs, from 878%

to 464%. The annualized performance is lower than for the full sample, but the CE return

still increases significantly by up to 108.8% for the transaction costs of 30bp.

As for the IG subsample, the portfolios based on HY bonds show evidence of a flight to

safety behavior during the crisis period. As expected, momentum is positive and significant

outside of the crisis. Note that the marginal impact of MOM for HY is comparable to IG

in absolute terms, but relatively much higher given the large differences in transaction costs

among the two subsamples.

Annual turnover turns out to be higher for portfolios based on HY bonds, decreasing

from 800% to 761% with increasing transaction costs. The performance of such portfolios,

measured by the increase in CE return, is intuitively higher than for portfolios based on IG

31Among institutional investors, many have restrictions in investing in HY bonds, while there are no particular boundaries
for IG securities.
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bonds, being between 215.5% and 194.2%.32

4.7 Volatility and Skewness

Table 9 presents optimal portfolios taking into account VOL and SKEW in addition to

the previously discussed bond-specific characteristics. For ease of interpretation, only the

marginal impact and p-value of VOL and SKEW are shown, along with average weight

statistics and annualized performance measures.

We find that the optimal portfolios consistently and significantly tilt toward bonds with

lower volatility and positive skewness. The investor therefore dislikes bonds which showed

high return variability in the past and invests in bonds whose distribution is skewed towards

positive returns. It is not surprising that volatility and skewness have little meaning during

the crisis period (lower coefficients and marginal significance). Strong market movements in

this period are different from the long-term distribution of returns, making it irrelevant to

condition optimal weights on these past moments.

The inclusion of volatility and skewness improves the performance of the portfolios at

the expense of more trading. When looking at the specification with transaction costs of

75bp, the overall gain in CE return of 258.1% is higher than the gain of 171% for the optimal

portfolio without VOL and SKEW (Table 5). The Sharpe ratio and average return are higher

as well: 1.221 vs. 1.062 and 19.9% vs. 13.5%, respectively. This improvement comes at the

expense of higher trading, with overall turnover going from 416% to 1196%.

Overall, volatility and skewness seem to have an impact on optimal corporate bond

portfolios, but generate variations in the portfolio weights and turnover that are hardly

tradeable.

32The astonishing performance is likely to be partially driven by extreme market movements during the crisis years.
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4.8 Additional Robustness Checks

We briefly summarize the results of various additional robustness checks.33 First, we estimate

the portfolio weights for various levels of risk aversion of 1, 3, 5, and 10, which complement

the original γ = 7 results for our main specification (Table 2, 75bp transaction costs). As

risk aversion decreases, the economic and statistical impact of the characteristics increases.

The performance of the optimal portfolio also increases, as less risk-averse investors are

more aggressive in their use of cross-sectional and time-series variation in the characteristics.

Hence, our portfolio results are even more significant for lower levels of γ.

Second, we investigate whether our findings are driven by individual but frequent bond

issuers. In our sample, three companies, General Motors (GM), General Electric (GE), and

Bank of America (BoA), issue about 11.7%, 10.2%, and 6.4% of the bonds, respectively. We

re-run our estimation by omitting from the sample each one of these borrowers, one at a

time. The results are unchanged.

Third, we specify the cross-sectional variation in transaction costs to be a function of

illiquidity, rather than size of issuance, as assumed in the last columm of Table 2. In other

words, more illiquid stocks have larger transaction costs. Here again, the results are very

similar to the original specification.

5 Conclusion

We present an empirical approach to optimally select corporate bond portfolios based on

bond-specific characteristics and macroeconomic regimes. We find that cross-sectional char-

acteristics are useful to construct portfolios that have significantly higher certainty equivalent

returns and Sharpe ratios, even after adjusting conservatively for transaction costs and costly

short selling. We also document that the optimal corporate bond portfolio strategy depends

on the state of the economy. In periods of high (low) macroeconomic uncertainty, the op-

timal portfolio allocation is tilted away from (toward) long-maturity and high-credit rating

33The full set of tables from the robustness specifications can be found in the Internet Appendix at the end of the paper.
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bonds. An interpretation of this result is that, during economic downturns, a flight-to-safety

strategy is optimal. A main finding of this paper is that characteristics used extensively by

the corporate bond pricing literature to proxy for various sources of risk are also useful in

forming corporate bond portfolios.

The results that we present are admittedly in-sample. However, given the large certainty

equivalent gains, the large cross-section of bonds used in the estimation, and the robustness

of the parametric weights, we believe that our main results will hold out-of-sample. Unfortu-

nately, we cannot verify that claim as the corporate bond data does not span a long enough

period.34

Various extensions to our results are possible. First, one can test whether more complex

bond structures, such as callability, redeemable, make-whole, cross-acceleration, cross-default

and others, have an effect on the optimal portfolio. Second, we can use utility functions other

than CARRA in the estimation of the weights provided that they can be written in closed

form. Finally, this parametric portfolio approach can be applied to other OTC markets,

as long as they are liquid enough, such as municipal bonds, or agency mortgage backed

securities.

34Hansen and Timmermann (2016) show that out-of-sample tests do no necessarily lead to better inference, especially for
short datasets, as their power is significantly reduced.
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Table 1: Summary Statistics
This table displays summary statistics of the data used in our study. All statistics are for the sample August 2005 until
September 2015. In Panel A, we report average monthly statistics of the sample of bonds that are included in our portfolio. In
Panel A, we report the number of bonds, the amount of outstanding debt, and the number of bonds that come in and out of
the sample. The column Total shows the number and amount of outstanding debt of all bonds that are present at least once in
our sample. The column TRACE reports average monthly figures of the raw TRACE sample during our sample period. Panel
B reports a correlation matrix and summary statistics for benchmark returns and comparable market indices. EW and VW are
our equal and value-weighted benchmarks, respectively. T-Bill is the secondary market one month US Treasury bill. IG and
HY are the Bloomberg-FINRA Investment Grade and High Yield total return corporate bond indices, respectively. Mix is a
monthly weighted average of IG and HY, depending on the amount of IG and HY bonds in our sample in that month. S&P500
is the Standard & Poor’s 500 total index return. Panel C reports a correlation matrix and summary statistics for bond-specific
characteristics used as conditioning variables in the portfolio optimization. TTM is the bond’s time to maturity, DUR is its
modified duration. RAT is the average rating of the bond across the three main rating agencies (Standard & Poor’s, Moody’s,
and Fitch). ILLIQ is an illiquidity measure in the spirit of Bao, Pan, and Wang (2011). MOM is the monthly compounded
return between months t− 7 and t− 1, following Jostova et al. (2013). SIZE is the bond offering amount at issuance in billions
of USD.

Panel A: Bond Sample

Mean Std. Min Median Max Total TRACE
# Bonds 966 135 667 976 1206 4491 14065
# Bonds In 28 14 8 25 79 - -
# Bonds Out 29 12 6 29 70 - -
Outst. Debt 597 141 420 604 888 1984 4384
Outst. Debt In 13 8 1 12 53 - -
Outst. Debt Out 9 6 1 8 34 - -

Panel B: Bond Indexes

EW VW T-Bill IG HY Mix S&P500
Mean 0.073 0.062 0.012 0.047 0.063 0.051 0.080
Std 0.101 0.082 0.005 0.049 0.127 0.057 0.148
Skew 1.310 -0.039 1.188 -0.865 0.553 -0.109 -0.805
SR 0.595 0.603 – 0.716 0.394 0.675 0.455

EW 1.000 0.975 -0.089 0.846 0.827 0.922 0.401
VW 1.000 -0.090 0.920 0.786 0.951 0.406
T-Bill 1.000 -0.084 -0.063 -0.069 -0.040
IG 1.000 0.651 0.945 0.367
HY 1.000 0.852 0.654
Mix 1.000 0.520
S&P500 1.000

Panel C: Bond Characteristics

TTM DUR RAT COUP ILLIQ MOM SIZE
Mean 8.328 5.444 7.328 5.497 0.902 0.041 0.618
Median 5.384 4.500 6.333 5.750 0.328 0.026 0.400
Std 8.175 3.967 3.754 1.695 1.491 0.144 0.766
Min 0.247 0.032 1.000 0.000 0.000 -0.864 0.010
Max 94.266 22.984 23.000 14.250 10.755 4.625 15.000

TTM 1.000 0.943 -0.034 0.277 0.330 0.041 -0.083
DUR 1.000 -0.087 0.234 0.303 0.057 -0.087
RAT 1.000 0.383 0.224 0.202 -0.162
ILLIQ 1.000 0.210 0.092 -0.109
COUP 1.000 -0.002 -0.240
MOM 1.000 -0.042
SIZE 1.000
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Table 2: Optimal Corporate Bonds Portfolios - Various Transaction Costs
This table shows estimates of the optimal portfolio policy for the following bond-specific characteristics: time to maturity (TTM),
credit rating (RAT), coupon (COUP), illiquidity (ILLIQ), momentum (MOM), and size (SIZE). The parameters are estimated
with a power utility with γ = 7. Our sample period is from August 2005 until September 2015 and includes 116,932 bond-month
observations. The column VW (EW) refers to the value-weighted (equal weighted) portfolio benchmark with fixed transaction
costs of 75bp. The columns display optimal parametric portfolio policies with different fixed transaction costs levels of 10bp,
25bp, 50bp, and 75bp, time-varying transaction costs TS, and transaction costs that vary both over time and cross-sectionally
CS-TS (see Appendix A). The first set of rows presents the marginal impact of the characteristics and bootstrapped p-values.
The second set of rows shows average absolute portfolio weight, average minimum and maximum portfolio weights, average
sum of negative weights, and annual turnover of the portfolio. The last set of rows reports the (annualized) performance of the
optimal portfolio, displaying its certainty equivalent, certainty equivalent delta with respect to the corresponding benchmark,
its mean, standard deviation, skewness and Sharpe ratio.

VW EW CBPP

10bp 25bp 50bp 75bp TS CS-TS

TTM - - -40.049 -15.557 -11.200 -10.074 -10.519 -10.234

- - (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

RAT - - 16.628 19.696 10.613 2.953 5.239 3.707

- - (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

COUP - - 18.343 3.877 8.487 10.988 10.649 11.148

- - (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

ILLIQ - - 32.656 6.984 0.891 -0.115 0.109 -0.024

- - (0.001) (0.001) (0.070) (0.675) (0.737) (0.930)

MOM - - 52.357 36.918 21.341 9.983 13.476 11.150

- - (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

SIZE - - -11.245 -11.718 -8.224 -5.461 -6.229 -5.490

- - (0.063) (0.001) (0.001) (0.001) (0.001) (0.001)

|wi| × 100 0.106 0.106 0.537 0.348 0.231 0.166 0.185 0.174

max wi × 100 1.090 0.106 4.178 2.952 1.878 1.261 1.422 1.316

min wi × 100 0.002 0.106 -2.480 -1.604 -0.970 -0.586 -0.700 -0.628∑
wiI(wi < 0) 0.000 0.000 -2.071 -1.169 -0.602 -0.291 -0.381 -0.326∑
|(wi,t − wi,t−1)| 0.551 0.746 33.027 18.946 10.819 5.310 6.994 5.875

CE 0.031 0.030 0.136 0.100 0.064 0.044 0.049 0.046

- - (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

%∆CE - - 2.886 1.941 0.939 0.419 0.531 0.438

r̄ 0.058 0.067 0.276 0.186 0.105 0.068 0.077 0.071

σ(r) 0.082 0.101 0.197 0.158 0.112 0.086 0.092 0.088

Skew -0.068 1.292 1.833 2.040 2.564 3.304 3.036 3.163

SR 0.551 0.538 1.325 1.088 0.820 0.640 0.692 0.659
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Table 3: Optimal Corporate Bonds Portfolios - Smoothing Fluctuations and Re-
ducing Turnover
This table displays estimates of the smoothing parameter α for different transaction costs and risk aversion γ of a CRRA in-
vestor. The parameter α is estimated conditional on the optimal portfolio based on the following bond-specific characteristics:
time to maturity (TTM), credit rating (RAT), coupon (COUP), illiquidity (ILLIQ), momentum (MOM), and size (SIZE). Our
sample period is from August 2005 until September 2015 and includes 116,932 bond-month observations. The columns VW
refer to the value-weighted benchmark with transaction costs of 75bp. We present optimal portfolios for risk aversion of 5 and
7, and for transaction costs of 50bp and 75bp. The first set of rows presents the marginal impact of the characteristics and
bootstrapped p-values. The second set of rows shows the optimal α and bootstrapped p-values. The third set of rows shows
average absolute portfolio weight, average minimum and maximum portfolio weights, average sum of negative weights, and
annual turnover of the portfolio. The last set of rows reports the (annualized) performance of the optimal portfolio, displaying
its certainty equivalent, certainty equivalent delta with respect to the corresponding benchmark, its mean, standard deviation,
skewness and Sharpe ratio.

VW CBPP (γ = 5) VW CBPP (γ = 7)

50bp 75bp 50bp 75bp

TTM - -8.712 -7.523 - -11.200 -10.074

- (0.001) (0.001) - (0.001) (0.001)

RAT - 17.744 6.695 - 10.613 2.953

- (0.001) (0.001) - (0.001) (0.001)

COUP - 6.655 10.032 - 8.487 10.988

- (0.001) (0.001) - (0.001) (0.001)

ILLIQ - 1.301 -0.081 - 0.891 -0.115

- (0.005) (0.734) - (0.070) (0.675)

MOM - 28.194 11.880 - 21.341 9.983

- (0.001) (0.001) - (0.001) (0.001)

SIZE - -9.762 -6.137 - -8.224 -5.461

- (0.001) (0.001) - (0.001) (0.001)

α - 0.498 0.564 - 0.497 0.555

- (0.001) (0.001) - (0.001) (0.001)

|wi| × 100 0.106 0.262 0.164 0.106 0.213 0.158

max wi × 100 1.090 2.010 1.253 1.090 1.610 1.175

min wi × 100 0.002 -1.006 -0.518 0.002 -0.812 -0.512∑
wiI(wi < 0) 0.000 -0.758 -0.284 0.000 -0.520 -0.251∑
|(wi,t − wi,t−1)| 0.551 7.438 2.997 0.551 5.694 2.642

CE 0.039 0.102 0.067 0.031 0.083 0.057

- (0.001) (0.001) (0.001) (0.001) (0.001)

%∆CE - 1.550 0.718 - 1.515 0.839

r̄ 0.058 0.145 0.092 0.058 0.116 0.079

σ(r) 0.082 0.124 0.097 0.082 0.093 0.076

Skew -0.068 1.559 2.106 -0.068 1.615 2.009

SR 0.551 1.059 0.812 0.551 1.103 0.859
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Table 4: Optimal Corporate Bonds Portfolios - Variables Selection
This table displays estimates for different variable specifications of the optimal policy. The bond-specific characteristics that
we consider are: time to maturity (TTM), credit rating (RAT), coupon (COUP), illiquidity (ILLIQ), momentum (MOM), and
size (SIZE). The parameters are estimated with a power utility with risk aversion of 7 and fixed transaction costs of 75bp.
Our sample period is from August 2005 until September 2015 and includes 116,932 bond-month observations. For each of
the specifications, we present results with and without smoothing parameter α, which is estimated following the procedure
described in Section 2.3. The column VW refers to the value-weighted benchmark without characteristics. The first set of rows
presents the marginal impact of the characteristics and bootstrapped p-values. The second set of rows shows the optimal α and
bootstrapped p-values, whenever applicable. The third set of rows shows average absolute portfolio weight, average minimum
and maximum portfolio weights, average sum of negative weights, and annual turnover of the portfolio. The last set of rows
reports the (annualized) performance of the optimal portfolio, displaying its certainty equivalent, certainty equivalent delta
with respect to the corresponding benchmark, its mean, standard deviation, skewness and Sharpe ratio.

VW CBPP (75bp)

(1) (2) (3) (4) (5) (6)

TTM - -3.423 -7.512 -10.074

- (0.001) (0.001) (0.001)

RAT - - -2.019 2.953

- - (0.001) (0.001)

COUP - - 10.059 10.988

- - (0.001) (0.001)

ILLIQ - - - -0.115

- - - (0.675)

MOM - - - 9.983

- - - (0.001)

SIZE - - - -5.461

- - - (0.001)

α - - 0.023 - 0.028 - 0.557

- - (0.232) - (0.293) - (0.001)

|wi| × 100 0.106 0.116 0.116 0.137 0.137 0.166 0.158

max wi × 100 1.090 1.086 1.086 1.177 1.177 1.261 1.175

min wi × 100 0.002 -0.051 -0.051 -0.374 -0.374 -0.586 -0.511∑
wiI(wi < 0) 0.000 -0.047 -0.047 -0.151 -0.150 -0.291 -0.251∑
|(wi,t − wi,t−1)| 0.551 0.644 0.635 0.942 0.926 5.400 2.633

CE 0.031 0.032 0.032 0.034 0.034 0.044 0.057

- (0.393) (0.391) (0.179) (0.177) (0.001) (0.001)

%∆CE - 0.032 0.032 0.097 0.097 0.419 0.839

r̄ 0.058 0.054 0.054 0.057 0.057 0.068 0.079

σ(r) 0.082 0.075 0.075 0.080 0.080 0.086 0.076

Skew -0.068 0.044 0.027 1.800 1.752 3.304 2.003

SR 0.551 0.556 0.556 0.553 0.554 0.640 0.859
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Table 5: Optimal Corporate Bond Portfolios With Macroeconomic Fluctuations
This table presents estimates of the optimal portfolio policy conditioning on two macroeconomic regimes (no crisis and crisis)
and different combinations of bond-specific characteristics, defined in Table 2. We use an NBER recession dummy variable,
interacted with the bond-specific characteristics, to proxy for macroeconomic regimes. The regime-specific parameters are
estimated for a power utility with risk aversion γ = 7 and fixed transaction costs of 75bp. Our sample period covers August
2005 until September 2015 and includes 116,932 bond-month observations. For the full specification, we present results with
and without the smoothing parameter α. The column VW refers to the corresponding value-weighted benchmark. The first
two sets of rows present the marginal impact of the characteristics in both regimes and bootstrapped p-values. The third set
of rows shows the optimal α and bootstrapped p-values, whenever applicable. The fourth set of rows shows the average sum of
negative weights and annual turnover of the portfolio. The last set of rows reports the (annualized) performance of the optimal
portfolio, displaying its certainty equivalent, certainty equivalent delta with respect to the corresponding benchmark, its mean,
standard deviation, skewness and Sharpe ratio.

VW CBPP (75bp) and NBER Recessions

(1) (2) (3) (4) (5)

TTMno crisis - 13.519 5.704 4.005 4.761

- (0.001) (0.001) (0.001) (0.001)

RATno crisis - - 23.306 19.615 21.104

- - (0.001) (0.001) (0.001)

COUPno crisis - - 3.825 1.699 2.058

- - (0.001) (0.001) (0.001)

ILLIQno crisis - - - 0.028 0.108

- - - (0.733) (0.221)

MOMno crisis - - - - 3.352

- - - - (0.001)

SIZEno crisis - - - -10.694 -11.523

- - - (0.001) (0.001)

TTMcrisis - -34.546 -50.902 -52.694 -49.988

- (0.001) (0.001) (0.001) (0.001)

RATcrisis - - -16.851 -19.868 -11.227

- - (0.001) (0.001) (0.001)

COUPcrisis - - 51.945 50.069 43.446

- - (0.001) (0.001) (0.001)

ILLIQcrisis - - - -2.133 -1.658

- - - (0.616) (0.623)

MOMcrisis - - - - 10.223

- - - - (0.001)

SIZEcrisis - - - -10.852 -11.571

- - - (0.001) (0.001)

α - - - - - 0.137

- - - - - (0.001)∑
wiI(wi < 0) 0.000 -0.344 -0.702 -0.541 -0.632 -0.622∑
|(wi,t − wi,t−1)| 0.551 2.188 3.096 2.969 4.160 3.726

CE 0.031 0.050 0.077 0.079 0.084 0.085

- (0.001) (0.001) (0.001) (0.001) (0.001)

%∆CE - 0.613 1.484 1.548 1.710 1.742

r̄ 0.058 0.074 0.122 0.126 0.135 0.134

σ(r) 0.082 0.080 0.108 0.111 0.114 0.112

Skew -0.068 0.653 0.539 0.848 0.640 0.602

SR 0.551 0.767 1.004 1.015 1.062 1.080
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Table 6: Optimal Corporate Bond Portfolios - Alternative Definitions of Macroe-
conomic Fluctuations
The table presents estimates of the optimal portfolio policy conditioning on the following two alternative definitions of macroe-
conomic regimes: the index of macroeconomic uncertainty of Jurado, Ludvigson, and Ng (2015) (MU) and extreme cross
sectional dispersion of bond returns to capture downside risk (DOWN) (Section 3.3). The regimes are introduced through an
interaction of bond-specific characteristics, defined in Table 2, with a dummy variable that equals one in economic downturns.
The regime-specific parameters are estimated for a power utility with γ = 7 and fixed transaction costs of 75bp. Our sample
period covers August 2005 until September 2015 and includes 116,932 bond-month observations. We present results with and
without the smoothing parameter α. The first two sets of rows display the marginal impact the characteristics in both regimes,
the estimate of alpha, and bootstrapped p-values. The third set of rows shows the optimal α, whenever applicable. The fourth
set of rows shows the average sum of negative weights and annual turnover of the portfolio. The last set of rows reports the
(annualized) performance of the optimal portfolio, displaying its certainty equivalent, certainty equivalent delta with respect to
the corresponding benchmark, its mean, standard deviation, skewness and Sharpe ratio.

VW CBPP (75bp) VW CBPP (75bp)

MU DOWN

(1) (2) (3) (4)

TTMno crisis - 3.595 - -1.518

- (0.001) - (0.001)

RATno crisis - 15.980 - 14.327

- (0.001) - (0.001)

COUPno crisis - 4.311 - 10.085

- (0.001) - (0.001)

ILLIQno crisis - 0.053 - 0.083

- (0.510) - (0.397)

MOMno crisis - 1.862 - 6.952

- (0.001) - (0.001)

SIZEno crisis - -10.012 - -8.772

- (0.001) - (0.001)

TTMcrisis - -37.142 - -27.686

- (0.001) - (0.001)

RATcrisis - 9.003 - -7.506

- (0.001) - (0.001)

COUPcrisis - 17.985 - 24.588

- (0.001) - (0.001)

ILLIQcrisis - 1.016 - -0.643

- (0.756) - (0.700)

MOMcrisis - 26.288 - 6.405

- (0.001) - (0.001)

SIZEcrisis - -9.106 - -13.096

- (0.001) - (0.001)

α - - 0.263 - - 0.431

- - (0.001) - - (0.001)∑
wiI(wi < 0) 0.000 -0.488 -0.470 0.000 -0.505 -0.463∑
|(wi,t − wi,t−1)| 0.551 4.094 3.248 0.551 5.675 3.766

CE 0.031 0.078 0.081 0.031 0.057 0.071

- (0.001) (0.001) (0.001) (0.001) (0.001)

%∆CE - 1.516 1.613 - 0.839 1.290

r̄ 0.058 0.122 0.120 0.058 0.090 0.100

σ(r) 0.082 0.106 0.099 0.082 0.097 0.087

Skew -0.068 0.676 0.432 -0.068 1.784 1.233

SR 0.551 1.018 1.074 0.551 0.794 0.997
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Table 7: Optimal Corporate Bond Portfolios - Costly Short Selling
This table displays estimates of the optimal portfolio policy for various costs of borrowing and shorting corporate bonds (see
Asquith et al. (2013)). The policy is a function of NBER regimes interacted with bond-specific characteristics, which defined
in Table 2. The regime-specific parameters are estimated for a power utility with γ = 7 and fixed transaction costs of 75bp.
Our sample period covers August 2005 until September 2015 and includes 116,932 bond-month observations. The column
VW refers to the value-weighted portfolio benchmark. The header of the remaining columns display the level of short-selling
penalization applied in the non-crisis and crisis period, respectively. The first two sets of rows display the marginal impact the
characteristics in both regimes and bootstrapped p-values. The third set of rows shows the average sum of negative weights and
annual turnover of the portfolio. The last set of rows reports the (annualized) performance of the optimal portfolio, displaying
its certainty equivalent, certainty equivalent delta with respect to the corresponding benchmark, its mean, standard deviation,
skewness and Sharpe ratio.

VW CBPP (75bp)

0bp/0bp 10bp/10bp 20bp/20bp 20bp/40bp 40bp/80bp

TTMno crisis - 4.761 3.024 1.834 1.865 0.742

- (0.001) (0.001) (0.001) (0.001) (0.001)

RATno crisis - 21.104 17.034 13.742 13.626 9.492

- (0.001) (0.001) (0.001) (0.001) (0.001)

COUPno crisis - 2.058 -0.381 -0.668 -0.693 -0.376

- (0.001) (0.001) (0.001) (0.001) (0.001)

ILLIQno crisis - 0.108 0.118 0.114 0.114 0.106

- (0.221) (0.179) (0.198) (0.196) (0.229)

MOMno crisis - 3.352 2.134 1.511 1.498 0.992

- (0.001) (0.001) (0.001) (0.001) (0.001)

SIZEno crisis - -11.523 -11.735 -11.233 -11.205 -10.661

- (0.001) (0.001) (0.001) (0.001) (0.001)

TTMcrisis - -49.988 -45.058 -40.479 -33.623 -24.272

- (0.001) (0.001) (0.001) (0.001) (0.001)

RATcrisis - -11.227 -8.963 -7.059 -4.790 -3.148

- (0.001) (0.001) (0.001) (0.012) (0.055)

COUPcrisis - 43.446 35.561 30.153 22.241 14.267

- (0.001) (0.001) (0.001) (0.001) (0.001)

ILLIQcrisis - -1.658 -2.092 -2.485 -2.970 -3.287

- (0.646) (0.551) (0.467) (0.327) (0.177)

MOMcrisis - 10.223 10.293 10.307 10.262 9.447

- (0.001) (0.001) (0.001) (0.001) (0.001)

SIZEcrisis - -11.571 -12.016 -11.371 -11.506 -11.423

- (0.001) (0.001) (0.001) (0.001) (0.001)∑
wiI(wi < 0) 0.000 -0.632 -0.426 -0.301 -0.269 -0.135∑
|(wi,t − wi,t−1)| 0.551 4.160 3.382 2.917 2.781 2.236

CE 0.031 0.084 0.078 0.073 0.071 0.064

- (0.001) (0.001) (0.001) (0.001) (0.001)

%∆CE - 1.710 1.516 1.355 1.290 1.065

r̄ 0.058 0.135 0.116 0.104 0.100 0.086

σ(r) 0.082 0.114 0.100 0.089 0.087 0.077

Skew -0.068 0.640 0.772 0.906 0.936 1.235

SR 0.551 1.062 1.033 1.021 0.993 0.955
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Table 8: Optimal Portfolios - Investment Grade and High-Yield Bonds
The table displays estimates of the optimal portfolio policy estimated for two subsamples of bonds: investment grade (93,659
bond-month observations) and high-yield (23,273 bond-month observations) bonds. The policy is a function of NBER regimes
interacted with bond-specific characteristics, which are defined in Table 2. The regime-specific parameters are estimated for
a power utility with γ = 7. Our sample period covers August 2005 until September 2015. We present results with fixed
transaction costs of 30bp, 40bp, and 50bp (100bp, 110bp, and 120bp) for the investment grade (high-yield) subsample. The
first two sets of rows display the marginal impact the characteristics in both regimes and bootstrapped p-values. The third
set of rows shows the average sum of negative weights and annual turnover of the portfolio. The last set of rows reports the
(annualized) performance of the optimal portfolio, displaying its certainty equivalent, certainty equivalent delta with respect to
the corresponding benchmark, its mean, standard deviation, skewness and Sharpe ratio.

CBPP - IG CBPP - HY

30bp 40bp 50bp 100bp 110bp 120bp

TTMno crisis 28.634 24.318 20.292 27.072 27.540 28.002

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

RATno crisis -5.554 -0.571 1.784 219.318 217.660 216.194

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

COUPno crisis 15.245 12.363 11.342 -39.598 -33.025 -27.857

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

ILLIQno crisis 0.642 0.314 0.209 0.514 0.352 0.204

(0.004) (0.040) (0.076) (0.561) (0.661) (0.779)

MOMno crisis 4.019 1.593 0.873 3.216 3.090 3.101

(0.001) (0.001) (0.001) (0.016) (0.010) (0.004)

SIZEno crisis -35.131 -24.620 -18.187 -128.637 -122.392 -120.060

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

TTMcrisis -65.329 -65.802 -62.445 -230.625 -225.491 -219.500

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

RATcrisis 69.630 54.340 44.363 96.462 94.290 91.722

(0.001) (0.001) (0.001) (0.012) (0.007) (0.004)

COUPcrisis 173.499 147.318 124.038 90.978 89.973 88.738

(0.001) (0.001) (0.001) (0.082) (0.056) (0.040)

ILLIQcrisis -32.678 -14.483 -7.544 11.324 9.719 8.562

(0.095) (0.175) (0.215) (0.870) (0.872) (0.872)

MOMcrisis -15.264 -6.539 -2.587 34.812 34.104 33.800

(0.128) (0.249) (0.484) (0.379) (0.345) (0.305)

SIZEcrisis 34.814 26.235 16.895 16.719 17.043 17.739

(0.001) (0.001) (0.001) (0.527) (0.482) (0.433)∑
wiI(wi < 0) -1.628 -1.201 -0.928 -1.124 -1.09 -1.064∑
|(wi,t − wi,t−1)| 8.788 5.999 4.644 8.043 7.801 7.609

CE 0.071 0.064 0.059 0.097 0.089 0.081

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

%∆CE 1.088 0.939 0.788 2.155 2.047 1.942

r̄ 0.108 0.093 0.082 0.232 0.219 0.207

σ(r) 0.097 0.086 0.078 0.193 0.190 0.187

Skew 0.105 0.034 0.030 1.315 1.250 1.199

SR 0.972 0.922 0.885 1.123 1.077 1.031
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Table 9: Optimal Corporate Bond Portfolios – Volatility and Skewness
This table shows estimates of the optimal portfolio policy conditioning on individual bond return volatility (VOL) and skewness
(SKEW) in addition to other bond-specific characteristics, which are defined in Table 2. All characteristics are interacted with
the NBER regime dummy. For brevity, we only display the VOL and SKEW parameters, which are estimated for a power
utility with γ = 7. In the columns, we present results for different fixed transaction costs levels of 10bp, 25bp, 50bp, and 75bp, for
time-varying transaction costs TS, and transaction costs that vary both over time and cross-sectionally CS-TS (see Appendix
A). The first two sets of rows present the marginal impact of bond-specific volatility (VOL) and skewness (SKEW) and the
bootstrapped p-values in normal periods and during economic downturns, respectively. The third set of rows shows the average
sum of negative weights and annual turnover of the portfolio. The last set of rows reports the (annualized) performance of the
optimal portfolio, displaying its certainty equivalent, certainty equivalent delta with respect to the corresponding benchmark,
its mean, standard deviation, skewness and Sharpe ratio.

CBPP

10bp 25bp 50bp 75bp TS CS-TS

VOLno crisis -111.721 -107.726 -83.850 -54.525 -64.142 -59.177

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

SKEWno crisis 148.132 119.768 83.158 53.207 60.677 56.101

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

VOLcrisis 46.563 31.541 17.648 9.216 9.382 7.824

(0.443) (0.068) (0.017) (0.029) (0.011) (0.018)

SKEWcrisis 15.932 11.982 11.569 9.796 9.021 8.647

(0.701) (0.308) (0.007) (0.001) (0.001) (0.001)∑
wiI(wi < 0) -8.576 -6.613 -4.363 -2.678 -3.142 -2.871∑
|(wi,t − wi,t−1)| 40.757 28.766 18.835 11.961 13.922 12.712

CE 0.262 0.210 0.150 0.111 0.121 0.114

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

%∆CE 6.486 5.176 3.545 2.581 2.781 2.563

r̄ 0.621 0.458 0.294 0.199 0.223 0.208

σ(r) 0.283 0.241 0.190 0.151 0.162 0.156

Skew 1.179 1.090 0.999 0.907 0.951 0.928

SR 2.128 1.828 1.466 1.221 1.280 1.238
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Figure 1: Cumulative Portfolio Returns
This figure presents cumulative returns over the sample period from August 2005 until September 2015 (116,932 bond-month
observations) for the value-weighted benchmark portfolio (VW) and four different specification of optimal parametric portfolios.
We show results for portfolios whose weights are conditioned on bond-specific characteristics (CBPP) as well as on bond-specific
characteristics and a proxy for macroeconomic conditions (Macro-CBPP). The proxy for different macroeconomic regimes is
the NBER recession period from December 2007 till June 2009, which is presented as a gray area in the figure. Both portfolios
are additionally presented taking into account smoothing of portfolio weights (CBPP (α) and Macro-CBPP (α)), as discussed
under 2.3.
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A Transaction Costs Magnitude

Since the dissemination of TRACE, an extensive literature on transaction costs in OTC

markets has grown.35 Transaction costs have been estimated overall as well as conditional

on credit rating, time period, bond offering amount, and trade size. There is a wide range

of popular transaction cost measures. We choose the Roll measure (see Roll (1984)) to be

our benchmark, which is among the best performers when it comes to measure transaction

costs in bond markets, as shown by Schestag, Schuster, and Uhrig-Homburg (2016).

In this paper, we take a conservative approach and consider the higher cost estimates found

in previous research. Our main specification relies on flat transaction costs of 75bp. This

number relates to estimates based on the full TRACE database by Friewald, Jankowitsch,

and Subrahmanyam (2012), Bao, Pan, and Wang (2011), and Schestag, Schuster, and Uhrig-

Homburg (2016).36 Our choice of transaction costs that vary over time and cross-sectionally

starts from the flat 75bp estimate and incorporates patterns documented in the literature.

Specifically, we rely on the findings of Friewald, Jankowitsch, and Subrahmanyam (2012),

Schestag, Schuster, and Uhrig-Homburg (2016), and Bessembinder et al. (2016), who show

that transaction costs are particularly high in times of economic uncertainty (e.g. during the

last financial crisis) and for bonds with a small offering amount. Table A.1 shows in detail

the transaction cost values adopted for the specifications with time-varying (TS) costs and

those with transaction costs varying both in time and cross-sectionally (CS − TS).

We believe that our choice of transaction costs is the most reasonable compromise, taking

into account different estimates in the literature. However, our approach is flexible and

allows for any desired level of transaction costs, varying both over time and across assets.

35See e.g. Bessembinder, Maxwell, and Venkataraman (2006), Hotchkiss and Jostova (2007), Bao, Pan, and Wang (2011),
Dick-Nielsen, Feldhutter, and Lando (2012), and Friewald, Jankowitsch, and Subrahmanyam (2012) among others.

36See Table 4, Panel B in Friewald, Jankowitsch, and Subrahmanyam (2012), Table 7 in Bao, Pan, and Wang (2011), and
Table 2 in Schestag, Schuster, and Uhrig-Homburg (2016).
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Table A.1: Time and Cross-Sectional Varying Transaction Costs
This table shows the level of transaction costs adopted in the specifications where we allow for their variation in the time series
and in the cross-section (TS and CS − TS). The numbers are all in basis-points. We consider three time periods: pre-crisis
(January 2005-November 2007), crisis (December 2007-June 2009), and post-crisis (July 2009-September 2015). For the cross-
section, we instead sort the bonds by offering amount in each month, and then divide the sample in terciles. The bonds in the
highest, medium and lowest tercile are defined to be large, medium and small, respectively.

PRE CRISIS CRISIS POST CRISIS

SMALL MEDIUM LARGE SMALL MEDIUM LARGE SMALL MEDIUM LARGE

TS 70 70 70 85 85 85 60 60 60
CS-TS 80 80 60 100 95 80 70 70 50
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B Estimation Details

B.1 Covariance Matrix of Coefficients

We estimate the covariance matrix of coefficients Σθ̂ by bootstrap. For that, we generate

1, 000 samples of returns and characteristics by randomly drawing monthly observations from

the original data set (with replacement). As our sample period covers different economic

regimes, we maintain the time-series dependence of the data by separately drawing randomly

each month. For each of these bootstrapped samples, we estimate the coefficients of the

optimal portfolio policy and compute the covariance matrix of the coefficients across all

bootstrapped samples. This approach has the advantage of not relying on asymptotic results,

and takes into account the potentially nonnormal features of the data.

The resulting estimate of the covariance matrix of the coefficients Σθ̂ can be used to test

hypotheses about the elements of θ. These tests address the economic question of whether

a given characteristic is related to the moments of returns in such a way that the investor

finds it optimal to deviate from the benchmark portfolio weights according to the realization

of the characteristic for each stock.

It is important to recognize that this is not equivalent to testing whether a characteristic is

cross-sectionally related to the conditional moments of stock returns for at least two reasons.

First, the benchmark portfolio weights may already reflect an exposure to the characteristics,

and it may not be optimal to change that exposure. Second, a given characteristic may be

correlated with first and second moments in an offsetting way, such that the conditionally

optimal portfolio weights are independent of the characteristic.

B.2 Variance of Certainty Equivalent Return

We estimate the variance of the certainty equivalent return (CE) σ2
CE by bootstrap. For that,

we estimate the distribution of the CE under the null hypothesis that our parameter vector

θ is zero and that bond-specific characteristics have no impact on optimal portfolio weights.
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We generate 1, 000 samples of returns by randomly drawing monthly observations from the

original data set (with replacement). As our sample period covers different economic regimes,

we maintain the time-series dependence of the data by separately drawing randomly each

month. For each of these bootstrapped samples, we compute the CE of the portfolio while

keeping θ = 0. Finally, we compute σ2
CE across all bootstrapped samples.

The resulting estimate of σ2
CE can be used to test hypotheses about the CE, e.g. whether

the CE of portfolios conditioned on bond-specific characteristics is larger than the CE of an

equally- or value weighted benchmark.

53



C Marginal Impact Calculation

The non-linearity of g(·) in our optimal weight specification

wi,t = w̄i,t + g

(
1

Nt

θ′xi,t

)
implies that the parameters θ cannot be interpreted as the marginal impact of changes

in xi,t on the optimal weights. Hence, we evaluate marginal impact by computing changes

in wi,t that result for a one-standard-deviation change in each of the conditioning variables

xi,t, evaluated at the average value of the other characteristics and at the estimated θ. This

is the standard approach used to measure economic impact in non-linear models.

We compute the average values of the conditioning variables x̄ by first taking cross-

sectional means of xi,t across bonds i for each t and second taking the time-series average

of these values across t. Based on these quantities, we compute the marginal impact of

characteristic x̄j on optimal weights, evaluated at the average of the other characteristics x̄˜j

as

dw

dxj
= g

(
1

Nt

θ̂′
(
x̄j + 1

)
|x̄˜j

)
− g

(
1

Nt

θ̂′x̄j|x̄˜j

)
. (13)

Note that the benchmark weights w̄i,t drop out when taking the first derivative of the op-

timal weights with respect to the conditioning variables. Furthermore, (13) is simplified due

to the fact that characteristics are standardized to have a cross-sectional standard deviation

of 1 in each t.

When conditioning on macroeconomic regime changes, the average characteristics and

thus the marginal impact are calculated separately for the different periods.
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Marginal Impact Involving Smoothing Parameter α

To smooth trading, the investor does not trade fully towards the optimal target portfolio,

but towards an average between the portfolio he holds (“hold” portfolio) and the target

portfolio. The weights of his optimal portfolio are

wi,t = αwhi,t + (1− α)wti,t,

with

whi,t = ηi,twi,t−1 = ηi,t
(
αwhi,t−1 + (1− α)wti,t−1

)
being the hold portfolio, i.e. the optimal portfolio from the period before with the weights

changed by the returns ηi,t =
1+ri,t
1+rp,t

, and

wti,t = w̄i,t + g

(
1

Nt

θ′xi,t

)
being the target portfolio.

Corporate bonds are issued and mature regularly, thus the investors portfolio changes

even in the absence of deliberate trading. In the passive hold portfolio, we set weights of

newly issued bonds coming into the sample to zero, as we have no information about how

to optimally invest into them. The net-weights left by maturing bonds that drop out of the

sample are distributed equally among remaining long positions. Plugging the definition of

the hold portfolio into the specification of optimal portfolio weights, we can see that they

follow the iterative process

wi,t = ηi,t
(
α2whi,t−1 + α (1− α)wti,t−1

)
+ (1− α)wti,t.

There exists no hold portfolio in the first period, as the investor has to build up his

positions. Thus, he trades fully towards the target portfolio wti,1. Furthermore, we set
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ηi,t = 1, i.e. the return of our average asset i is equal to the portfolio return. We compute

the marginal impact of characteristic x̄j on optimal weights, evaluated at the average of the

other characteristics x̄˜j as

dw

dxj
= α2

dwhi,t−1

dxj
+ α (1− α)

dwti,t−1

dxj
+ (1− α)

dwti,t
dxj

= αt
dwti,t−t+1

dxj
+ α(L) (1− α)

dg(·)
dxj

= αt
dg(·)
dxj

+ α(L) (1− α)
dg(·)
dxj

=
dg(·)
dxj

= g

(
1

Nt

θ̂′
(
x̄j + 1

)
|x̄˜j

)
− g

(
1

Nt

θ̂′x̄j|x̄˜j

)
with

α(L) =
(
1 + αL+ αL2 + . . .+ αLt−1

)
Note that the benchmark weights w̄i,t drop out when taking the first derivative of the

target weights with respect to the conditioning variables. Thus, an approximation of the

true marginal impact (abstracting from bonds coming into and dropping out of the sample)

follows the computation set out before under (13).
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INTERNET APPENDIX

Corporate Bond Portfolios: Bond-Specific

Information and Macroeconomic Uncertainty

Maximilian Bredendiek, Giorgio Ottonello, and Rossen Valkanov∗

January 1, 2017

In this internet appendix we include additional specifications of our corporate bond para-

metric portfolios (CBPP) that are not included in the paper. In Table 1 we display corporate

bond parametric portfolios with different levels of risk aversion γ. In Table 2 we present spec-

ifications where we independently exclude each of the top three issuers in our sample (General

Motors, General Electric, and Bank of America). In Table 3 we present specifications where

we allow transaction costs to vary over time and cross-sectionally, depending either on bond

issue amount or on the bond-specific illiquidity. Specifically, we sort the bonds by offering

amount (illiquidity) each month and divide the sorted sample in terciles. Bonds with the

smallest issue amount (highest illiquidity) are assigned the highest level of transaction costs,

according to the values shown in Appendix A in the paper.

∗Maximilian Bredendiek and Giorgio Ottonello are with Vienna Graduate School of Finance (VGSF), Welthandelsplatz 1,
Building D4, 4th floor, 1020 Vienna, Austria; email: maximilian.bredendiek@vgsf.ac.at and giorgio.ottonello@vgsf.ac.at. Rossen
Valkanov is Zable Endowed Chair and Professor of Finance, Rady School of Management, University of California San Diego,
9500 Gilman Drive, MC0553, La Jolla, CA 92093; email: rvalkanov@ucsd.edu.
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Table 1: Optimal Corporate Bonds Portfolios - Different Levels of Risk Aversion
This table shows estimates of the optimal portfolio policy for the following bond-specific characteristics: time to maturity
(TTM), credit rating (RAT), coupon (COUP), illiquidity (ILLIQ), momentum (MOM), and size (SIZE). The parameters are
estimated with a power utility. Our sample period is from August 2005 until September 2015. In each of the specifications we
present a different level of risk aversion γ. The columns display optimal parametric portfolio policies with fixed transaction
costs levels of 75bp. The first set of rows presents the marginal impact of the characteristics and bootstrapped p-values. The
second set of rows shows average absolute portfolio weight, average minimum and maximum portfolio weights, average sum of
negative weights, and annual turnover of the portfolio. The last set of rows reports the (annualized) performance of the optimal
portfolio, displaying its certainty equivalent, certainty equivalent delta with respect to the corresponding benchmark, its mean,
standard deviation, skewness and Sharpe ratio.

γ = 1 γ = 3 γ = 5 γ = 7 γ = 10

TTM 10.161 -3.305 -7.523 -10.074 -12.688

(0.001) (0.001) (0.001) (0.001) (0.001)

RAT 48.296 14.675 6.695 2.953 -0.260

(0.001) (0.001) (0.001) (0.001) (0.138)

COUP 10.895 9.582 10.032 10.988 12.319

(0.001) (0.001) (0.001) (0.001) (0.001)

ILLIQ 0.126 -0.046 -0.081 -0.115 -0.146

(0.599) (0.835) (0.734) (0.675) (0.665)

MOM 36.577 16.318 11.880 9.983 8.591

(0.001) (0.001) (0.001) (0.001) (0.001)

SIZE -22.181 -8.448 -6.137 -5.461 -5.604

(0.001) (0.001) (0.001) (0.001) (0.001)

|wi| × 100 0.573 0.223 0.175 0.166 0.167

max wi × 100 3.813 1.738 1.380 1.261 1.189

min wi × 100 -1.704 -0.741 -0.606 -0.586 -0.606∑
wiI(wi < 0) -2.262 -0.567 -0.333 -0.291 -0.293∑
I(wi ≤ 0)/Nt 0.517 0.397 0.328 0.306 0.304∑
|(wi,t − wi,t−1)| 19.671 8.479 6.212 5.310 4.705

CE 0.126 0.066 0.051 0.044 0.038

(0.001) (0.001) (0.001) (0.001) (0.001)

%∆CE 1.377 0.435 0.308 0.419 1.111

r̄ 0.232 0.108 0.080 0.068 0.058

σ(r) 0.444 0.172 0.112 0.086 0.068

Skew 3.020 3.238 3.294 3.304 3.329

SR 0.489 0.553 0.604 0.640 0.673
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Table 2: Optimal Corporate Bonds Portfolios - Exclusion of Most Frequent Issuers
This table shows estimates of the optimal portfolio policy for the following bond-specific characteristics: time to maturity (TTM),
credit rating (RAT), coupon (COUP), illiquidity (ILLIQ), momentum (MOM), and size (SIZE). The parameters are estimated
with a power utility with γ = 7. Our sample period is from August 2005 until September 2015. In each of the specifications we
exclude one of the top three issuers in our sample: General Motors (NO GM), General Electric (NO GE), and Bank of America
(NO BofA). The columns display optimal parametric portfolio policies with fixed transaction costs levels of 50bp and 75bp. The
first set of rows presents the marginal impact of the characteristics and bootstrapped p-values. The second set of rows shows
average absolute portfolio weight, average minimum and maximum portfolio weights, average sum of negative weights, and
annual turnover of the portfolio. The last set of rows reports the (annualized) performance of the optimal portfolio, displaying
its certainty equivalent, certainty equivalent delta with respect to the corresponding benchmark, its mean, standard deviation,
skewness and Sharpe ratio.

NO GM NO GE NO BofA

50bp 75bp 50bp 75bp 50bp 75bp

TTM -12.956 -9.686 -11.320 -11.256 -10.783 -10.359

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

RAT 6.087 4.386 13.802 5.129 11.978 3.669

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

COUP 23.499 16.917 5.732 10.022 6.314 11.566

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

ILLIQ -0.248 -0.115 1.021 -0.152 1.060 -0.068

(0.516) (0.639) (0.095) (0.661) (0.067) (0.834)

MOM 3.450 1.105 24.995 13.028 25.577 13.099

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

SIZE -7.315 -5.837 -7.175 -5.596 -11.431 -7.214

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

|wi| × 100 0.225 0.179 0.263 0.192 0.253 0.185

max wi × 100 1.499 1.292 2.122 1.452 2.105 1.406

min wi × 100 -0.856 -0.607 -1.065 -0.656 -1.119 -0.705∑
wiI(wi < 0) -0.437 -0.245 -0.621 -0.316 -0.630 -0.321∑
|(wi,t − wi,t−1)| 2.558 1.479 11.203 6.054 11.911 6.316

CE 0.045 0.040 0.067 0.046 0.070 0.048

(0.001) (0.013) (0.001) (0.001) (0.001) (0.001)

%∆CE 0.286 0.212 1.233 0.586 1.188 0.548

r̄ 0.068 0.063 0.113 0.073 0.120 0.075

σ(r) 0.080 0.079 0.120 0.093 0.124 0.093

Skew 1.236 0.817 2.574 3.335 2.639 3.354

SR 0.685 0.635 0.836 0.646 0.859 0.669
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Table 3: Optimal Corporate Bonds Portfolios - Cross-Sectional Varying T-Costs
This table shows estimates of the optimal portfolio policy for the following bond-specific characteristics: time to maturity
(TTM), credit rating (RAT), coupon (COUP), illiquidity (ILLIQ), momentum (MOM), and size (SIZE). The parameters are
estimated with a power utility with γ = 7. Our sample period is from August 2005 until September 2015 and includes 116,932
bond-month observations. All columns refer to portfolios with transaction costs that vary both over time and cross-sectionally
CS-TS (see Appendix ??). In the first (last) two columns, transaction costs vary cross-sectionally depending on the bond issue
amount (illiquidity). The columns VW refer to the respective value-weighted bond portfolio benchmarks. The first set of rows
presents the marginal impact of the characteristics and bootstrapped p-values. The second set of rows shows average absolute
portfolio weight, average minimum and maximum portfolio weights, average sum of negative weights, and annual turnover of the
portfolio. The last set of rows reports the (annualized) performance of the optimal portfolio, displaying its certainty equivalent,
certainty equivalent delta with respect to the corresponding benchmark, its mean, standard deviation, skewness and Sharpe
ratio.

Sort by SIZE Sort by ILLIQ

VW CS-TS VW CS-TS

TTM - -10.234 - -10.763

- (0.001) - (0.001)

RAT - 3.707 - 3.143

- (0.001) - (0.001)

COUP - 11.148 - 11.921

- (0.001) - (0.001)

ILLIQ - -0.024 - -0.042

- (0.930) - (0.885)

MOM - 11.150 - 10.800

- (0.001) - (0.001)

SIZE - -5.490 - -5.804

- (0.001) - (0.001)

|wi| × 100 0.106 0.174 0.106 0.175

max wi × 100 1.090 1.316 1.090 1.301

min wi × 100 0.002 -0.628 0.002 -0.638∑
wiI(wi < 0) 0.000 -0.326 0.000 -0.330∑
|(wi,t − wi,t−1)| 0.551 5.875 0.551 5.728

CE 0.032 0.046 0.031 0.046

- (0.001) - (0.001)

%∆CE - 0.438 - 0.484

r̄ 0.058 0.071 0.058 0.070

σ(r) 0.082 0.088 0.082 0.088

Skew -0.081 3.163 -0.085 3.271

SR 0.559 0.659 0.554 0.654
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